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Abstract—There is an increasing demand for analyzing live
surveillance video streams via large-scale camera networks,
particularly for applications in public safety and smart cities. To
address the conflict between resource-intensive detection models
and limited capabilities of cameras, a detection-with-tracking
framework has gained prominence. However, since trackers are
vulnerable to occlusions and new object appearances, frequent
detections are required to calibrate the results, leading to varying
detection demands that depends on video content. Consequently,
we propose a mechanism for content-aware analytics on collab-
orative cameras, denoted as VisFlow, to increase the quality of
detections and achieve the latency requirement by fully utilizing
camera resources. We formulate such a problem as a non-linear,
integer program with a long-term perspective, aimed at maxi-
mizing detection accuracy. An online mechanism, underpinned
by a queue-based algorithm and randomized rounding, is then
devised to dynamically orchestrate detection workloads among
cameras, thus adapting to fluctuating detection demands. Via
rigorous proof, both dynamic regret regarding overall accuracy
and the transmission budget are ensured in the long run. The
testbed experiments on Jetson Kits demonstrate that VisFlow
improves accuracy by 18.3% over the baselines.

I. INTRODUCTION

The surge in surveillance needs has led to the deployment
of cameras across various settings like factories, campuses,
and crossroads [1]–[3]. These cameras produce a vast amount
of video data that constantly requires meticulous analysis.
However, offloading a large volume of frames to a remote
cloud server is unsuitable for real-time video analytics due
to high latency and heavy transmissions [4]. Meanwhile,
the resources available in devices connected to the cameras
are usually limited [5]. Hence, a new framework combining
detection and tracking techniques has been widely used [6],
[7]. It conducts lightweight object tracking continuously, while
computing-intensive detections are performed at regular inter-
vals to calibrate the results and alleviate long-term tracking
drift [8]. However, the dynamic nature of video content, such
as swift object movements and occlusion, challenges the per-
formance of tracker, potentially leading to increased tracking
drift and cumulative accuracy loss [9], [10]. This requires more
frequent detection calibrations to maintain high precision,
thereby resulting in increased detection demands. Therefore,
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Fig. 1: An illustration of content-aware analytics. The devices with
high detection demands offload frames to spare devices.

in a system with collaborative cameras, more resources should
be provisioned for the cameras that need additional attention.

However, optimally conducting content-aware detections by
workload balancing on collaborative cameras, as shown in
Fig. 1, with varying video content, faces challenges as follows:

First, the detection demands of live video streams cannot be
known in advance. In live video stream, the ever-changing con-
tent often causes object trackers to fail due to occlusions and
the appearance of new objects, known as tracking drift [11].
Consequently, detection demand, which hinges on the current
tracking performance, becomes unpredictable. For example,
when using optical flow [12] to track pedestrians for 30 frames,
the tracking accuracy drops by 73% in heavily crowded scenes,
compared to just a 15% decrease with fewer people. Further, to
maintain an accuracy of 0.9, it requires six detections to correct
tracking drift in crowded scenes, but only two in less crowded
ones. Thus, proactive resource provisioning for inference is
the key to effectively managing vision shift among cameras.

Second, the tracking accuracy relies on the previous detec-
tion quality, which should be considered jointly. Prior research
has focused on adapting detection frequency and model selec-
tion in video analytics, treating each factor as independently
affecting accuracy [13], [14]. However, this approach is not
appropriate for the detection-with-tracking framework. A low
detection frequency leads to prolonged tracking, exacerbating
tracking drift. Moreover, since tracking is performed based
on the former frame’s result, low-quality detections lead to
inaccurate tracking. For instance, using the same tracker, we
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Fig. 2: Factors on Unpredictable Detection Demand

correct the result every 5 frames by a large model YOLOv7-
e6e and a lightweight model YOLOv7 [15], respectively, and
get tracking accuracy as 0.91 and 0.64.

Third, the provisioning of limited resources among hetero-
geneous cameras should also carefully consider both accuracy
and latency. As different devices have varying computing
resources, they can host models of different sizes. Larger
models typically provide higher accuracy, but the inference
latency is influenced by both the model size and the device
capability. The tracking quality relies both on detection quality
and detection frequency, facing a tradeoff on model size. Ad-
ditionally, the fluctuating network environment among devices
also impacts the end-to-end latency. Thus, to carefully ensure
both accuracy and latency, the devices need to orchestrate de-
tection frequency and model selection. Further, network status
should be considered when offloading frames among devices.

Existing research falls insufficient for handling all the above
challenges. Some works [6], [7], [16] resort to the detection-
with-tracking framework, but fail to fully use resources of mul-
tiple cameras. Others [17]–[20] study analytics with distributed
cameras, but ignore the tracking technique on the camera side.
And the rest [21]–[23] adjust analysis configuration adaptively
but fail to consider the effect of detection quality on tracking.

In this paper, we investigate content-aware video analytics
on heterogeneous collaborative cameras. More specifically,
for those cameras experiencing significant tracking drift and
high detection demands, we enhance detection frequency and
quality by offloading frames to spare devices and employing
larger models. To cope with the dynamic video content, we
adaptively adjust the offloading strategy within the constraint
of limited resources and the need to meet latency requirement.

To tackle the problem, we formulate this scenario as a
long-term, non-linear integer program aimed at maximizing
the cumulative accuracy across all cameras over time. To
deal with the unpredictable environments like video content
and network status, we have developed a polynomial-time
queue-based online learning algorithm. This algorithm learns
from past analytics’s accuracy, thereby facilitating improved
decisions for the current time slot. We also factor in device
energy consumption to manage long-term electricity costs. The
proposed algorithm comprises two main components. The first
component solves the decision regarding the inference frame
number assigned to each device in the real domain, using
feedback from previous time slots, such as tracking drift and
network status. We use queues to monitor and control the
cumulative transmission and energy cost, and to guide the
decision-making over time. The second component further re-
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Fig. 3: Collaborative Analytics on Heterogeneous Cameras

fines the decisions into a practical offloading strategy, ensuring
integer decisions and adherence to predefined constraints. Via
rigorous proof, both the dynamic regret in terms of accuracy
and the dynamic violation regarding transmission and energy
costs grow only sublinearly compared to the optimal scenario.

We implement a testbed upon four heterogeneous Jetson
Developer Kits and also verify the performance of large-scale
cameras for real-time video analytics. We use a series of mod-
els from YOLOv7 for detections, and the optical flow approach
for tracking, which are both typical and widely used tech-
niques. The testbed results show that our algorithm achieves
up to an 18.3% improvement in accuracy compared to state-
of-the-art alternatives. Additionally, our algorithm adaptively
adjusts the frame offloading strategy to facilitate content-aware
analytics across cameras with varying network conditions.

II. SYSTEM MODELS AND PROBLEM FORMULATION

A. Preliminary Case Study: Analytics on Distributed Cameras

Unpredictable Detection Demands: Due to limited com-
puting resources on smart cameras, it is hard to ensure real-
time performance for video analytics. Hence, there is a new
trend to combine detection with object tracking. Specifically,
frames are continuously processed by a lightweight tracker,
such as optical flow or KCF [24]. This process generates new
bounding boxes for objects by using the result from the former
frame and analyzing the deviation between consecutive frames.
In addition, as long-term tracking leads to cumulative accuracy
loss, necessary detections are frequently performed to correct
the bounding boxes obtained by tracker. Unfortunately, the
video content greatly affects the performance of the tracker.
For example, factors like occlusions and changes in object
appearance can lead to more tracking drift [11]. Thus, the
detection demand also varies with the video content.

In Fig. 2(a), we test the analytics quality on two videos using
YOLOv7-w6 with different detection frequencies. The two
videos are both downloaded from street surveillance camera
lives on YouTube [25], [26], with 30fps. We set per slot as
one second, and use the average accuracy of 30 frames as
the slot accuracy. The result depicts that for Video1, when
the detection frequency is set to 30fps and then to 10fps, the
average accuracy gap shifts from 0.19 to 0.05, corresponding
to the changes in video content. Intuitively, a relatively low
detection frequency suffices when the video content is clearer,
whereas more detections is needed when the content is chaotic.
Further, with detection frequency both set as 10fps, the accu-
racy of Video1 is greater than Video2 by 0.3 on average. Thus,
even with the same detection frequency, accuracy varies across
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different videos. This underscores the need for careful consid-
eration of the detection demands for each camera.

Fig. 2(b) shows the accuracy of detection-with-tracking
framework over time. We use YOLOv7 or YOLOv7-e6 as the
detector and optical flow as the tracker. The detection is trig-
gered once per second. The result illustrates that the long-term
tracking drift leads to a significant and cumulative accuracy
drop. Specifically, tracking accuracy decreases 27%-44% after
continuously tracking 29 frames, and the decrease varies from
video content. Consequently, increased detection frequency is
necessary as tracking accuracy drops fast. Moreover, the initial
detection quality also affects the onset of tracking accuracy.
As using the larger model YOLOv7-e6, the average detection
accuracy is 20% higher than with YOLOv7, and the tracking
accuracy is superior by 17.1%. Therefore, the impact of model
selection on tracking should also be considered.

Content-Aware Analytics on Heterogeneous Cameras:
Nowadays plenty of cameras are deployed at campus or
crossroads, which are often connected to heterogeneous de-
vices with varying resources. Owing to factors like purchasing
costs, most devices in a distributed camera system tend to be
weak, with only a few having adequate computing resources.
Unfortunately, these weaker devices often become overloaded,
struggling to handle varying detection demands and maintain
high-quality analytics. Thus, conducting content-aware detec-
tions and offloading frame inference tasks from overloaded to
underutilized devices could be a helpful solution.

Fig. 3(a) shows the inference time cost of models on
heterogeneous devices. For our testbed, we utilize four widely
used devices: Jetson Xavier NX, TX2, AGX Xavier, and AGX
Orin, along with a series of YOLOv7 variants. The test image
resolution is set the same as the official instructions, i.e.,
640x480 for YOLOv7 and YOLOv7x, and 1280x720 for the
others. The result shows the great performance gap among
devices. For instance, it takes 1,896 ms to infer a 480p frame
using YOLOv7 on NX, while it only takes 29.45 ms on Orin.
That is, while YOLOv7 runs at less than 1fps on the NX, it
can achieve 33fps on the Orin. Thus, a powerful device has
the potential to take on tasks from several weaker devices.

Fig. 3(b) further depicts the accuracy comparison between
the local inference approach and content-aware collaborative
inference approach. The testbed utilizes a Xavier and an
NX device, each running a detection-with-tracking framework
with YOLOv7x and optical flow. Under the local inference
approach, each device performs as many as possible inferences
locally, but the NX achieves only an average accuracy of 0.56
due to high inference latency. Conversely, with collaborative
inference approach, the workload is redistributed between
devices based on video content and detection demands. As
a result, the average accuracy on the NX improves to 0.72,
and the Xavier yields more results with high accuracy.

Insights: From the studies above, we conclude that: (1) The
tracking drift and detection demand of each camera fluctuates
as the video content changes. (2) Conducting content-aware
detections and balancing workloads in response to varying
detection demand across cameras enhances analysis quality.

B. System Settings and Models

We model our multi-camera collaborative video analytics
system as follows. The system contains a group of smart cam-
era devices, each denoted by N = {1, 2, . . . , N}, connected
via a wired backhaul. The camera devices generate video
streaming continuously, and we divide time into a series of
slots T = {1, . . . , T}. In each slot, F new frames are captured
by each camera, and the resolution varies from cameras. Each
device is deployed with an object detection model, which
varies among devices according to capability. Since the devices
have different resource capacities, we consider there are N0

strong devices with sufficient GPU resource, which are able to
accept frame processing task from other devices, denoted by
N0 = {1, . . . , N0}. And the other N1 devices are weak, which
can only offload tasks to strong devices or process frames
locally, denoted by N1 = {N0 + 1, . . . , N}. It matches most
realistic cases that usually only small part of devices are much
better than others.

Control Decisions: We introduce the control decision to
facilitate the modeling. In time slot t, we need to decide how
many frames to offload to other devices or to infer locally for
each device. For device i, we use Ni to denote the available
devices to offload. For strong device i, Ni = N0; and for weak
device i, Ni = N0 ∪ {i} (strong devices and itself). Thus, we
use xt

i,j ∈ [F ],∀i ∈ N , j ∈ Ni, t ∈ T to denote how many
frames of device i should be processed on device j in slot
t, where [F ] = {0, 1, . . . , F}. Our goal is to decide proper
inference frames for each device and assign the frames among
devices to fully utilize resources. From the control decision,
in slot t, the number of inferred frames of device i can be
measured as F t

i =
∑

j∈Ni
xt
i,j . Then we uniformly divide the

F frames into F t
i windows, make detection for the first frame

and use the result to track the other frames in each window.
Detection Accuracy: For each frame, we use the IoU

(Intersection over Union) between the bounding boxes and
the ground truth to measure the accuracy. Under the detection-
with-tracking framework, if a frame is inferred, the bounding
boxes are derived from detection. Otherwise, the result has
to be updated by tracking. Hence, we model the accuracy
of detection frames and tracking frames respectively. For
detections, we use ai,mj

to denote the detection accuracy of
video streaming from device i using the model mj on device
j. Thus, for device i, the total detection accuracy for all the
inferred frames can be measured as

Adet
i,t =

∑
j∈Ni

ai,mj
xt
i,j . (1)

For tracking frames, according to the preliminary study,
tracking accuracy relies on the initial detection accuracy and
tracking drift occurs as time goes. Thus, we denote ϕt

i ∈ [0, 1]
the tracking drift factor of device i in slot t, which measures
the accuracy loss compared to the former frame. Then, the
total tracking accuracy for device i can be measured as

Atrack
i,t = αt

i · F t
i · (ϕt

i + (ϕt
i)

2 + · · ·+ (ϕt
i)

F/F t
i −1)

= αt
i · F t

i · ϕ
t
i(1− (ϕt

i)
F/F t

i −1)

1− ϕt
i

, (2)
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where αt
i denotes the average initial detection accuracy of each

tracking window, F t
i equals to the window nuber, and there

are F/F t
i − 1 frames to track in each window. Hence, the

overall accuracy of device i in slot t is Ai,t = Adet
i,t +Atrack

i,t .
Inference Latency: For each slot t, each device needs to

infer frames from itself, and strong devices need to infer
frames offloaded from other devices additionally. Since the
tracker such as optical flow is lightweight and costs only
CPU resources, which is relatively sufficient to track frames in
real-time, while the inference costs limited GPU resource of
devices, we consider the inference latency as the bottleneck.
We use Ti,j to denote the inference time of device j using mj

to process a frame from device i. Thus, the inference latency
for device i can be measured as

Li,t = Ti,i · xt
i,i + I[i ∈ N0]

∑
j∈N\i

Tj,i · xt
j,i, (3)

where I[i ∈ N0] indicates whether device i is strong.
Transmission Budget: Since the network status and band-

width among devices fluctuate over time, the transmission of
each device has a budget. Since the frame data size is much
greater than the labels, we only consider the data size di of
one frame from device i. For weak devices, the transmission
only comes from offloading frames, but for strong devices, it
also comes from receiving frames. Thus, for any device i in
slot t, the total transmission Di,t can be measured by adding
the data it sends and receives:

Di,t =
∑

j∈Ni\i
dix

t
i,j + I[i ∈ N0]

∑
j∈N\i

djx
t
j,i, (4)

where xt
i,j and xt

j,i denote how many frames device i sends
to and receives from j in slot t, respectively.

Energy Consumption: Since electricity cost is one of the
primary costs when maintaining the video analytics system in
a long period, we take energy efficiency into consideration.
Since the energy consumed by transmission is much lower
than the inference using GPU in our testbed [27], we mainly
consider the inference energy. We use γi to denote the energy
cost for device i to make inference in a unit time, thus the
energy cost of device i in slot t can be measured as

Ei,t = γi · Li,t. (5)

C. Problem Formulation and Challenges

Control Problem PG: With the above system model, we
propose the following control problem, aiming at maximizing
the overall accuracy of all the devices with constrained infer-
ence latency, transmission budget and energy consumption.

PG : max
∑

t

∑
i∈N

Ai,t (6)

s.t. Li,t ≤ Tslot,∀i ∈ N , t ∈ T (7)
1

T

∑
t
Di,t ≤ Bi,t,∀i ∈ N (8)

1

T

∑
t

∑
i∈N

Ei,t ≤ Emax (9)∑
j∈Ni

xt
i,j ≥ 1,∀i ∈ N , t ∈ T (10)

F t
i ≤ F,∀i ∈ N , t ∈ T (11)

var. xt
i,j ∈ [F ],∀i ∈ N , j ∈ Ni, t ∈ T (12)

Constraint (7) ensures that the processing time of each device
does not exceed the total time of slot Tslot, i.e., the inference
tasks should not overwhelm the device capability. Constraint
(8) ensures that for each device i, the total transmission
should not exceed the transmission budget Bi,t. Since the
transmission budget relies on network status and cannot be
known in advance, satisfying the budget in each time slot t is
impossible. Thus, we aim to satisfy the constraint in the long
term. Constraint (9) restricts the average energy consumption
is no more than Emax in the long term, which controls the
electricity cost of the system. Constraint (10) ensures that
each device should make inference for at least one frame in
each slot, which avoids long-term tracking drift and accuracy
loss. Constraint (11) ensures the total inference frame does not
exceed the total frame num per slot for each device. Constraint
(12) restricts the domain of our decision variables.

Control Problem PD with Observable Inputs: Since there
is no oracle model, the ground truth cannot be known in the
analytic period. Therefore, we have to use our detection results
as an approximate substitute for the ground truth. For example,
tracking drift factor ϕ̂t

i need to be updated using our detection
results, and the details are in Section III. Then, we reformulate
problem PG with observable inputs:

PD : max
∑

t

∑
i∈N

Âi,t

s.t. Constraints (7) ∼ (12), (13)

where Âi,t denotes the accuracy from observable inputs.
Problem Challenges: However, it is still hard to solve the

problem PD with the observable inputs. First, as xt
i,j ∈ [F ],

the problem belongs a to non-linear integer program, which
is no easier than an NP-Complete [28] problem. Second,
as the system is running, the arrival of frames is in an
online manner, which leads to extra uncertainty. It’s non-
trivial to make frame inference offloading decisions in an ever-
changing environment considering accuracy, inference latency,
transmission limit, and energy cost meanwhile.

III. ONLINE ALGORITHM DESIGN

To handle the challenges, we use a virtual queue to measure
the violation of the long-term constraint and decouple the
problem into a series of subproblems per epoch. Fig. 4 depicts
the relationship between all the problems and the solutions,
which illustrates how we solve the problem step by step.

A. Notations and Transformations

Transformation of problem: For simplicity, we reformu-
late the problem PD into the canonical form:

min

T∑
t=1

ft(xt) s.t.

T∑
t=1

gt(xt) ⪯ 0;∀t : h(xt) ⪯ 0;xt ∈ X ,

∀t : ft(xt) := −
∑

T∈T ,i∈N
Âi,t,

∀t : gt(xt) := [∀i : Di,t −Bi,t;
∑

i∈N
Ei,t ≤ Emax],

∀t : h(xt) := [∀i : Li,t − Tslot; 1−
∑

j∈Ni

xt
i,j ;F

t
i − F ],
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Fig. 4: The Roadmap for Proposed Algorithm

where xt denotes the aggregation of {xt
i,j} in slot t, whose

integral domain is denoted by X = [F ]N0×N+N1 . Note that
taking the opposite of original objective as ft transforms PD

into a minimization problem, which facilitates our analysis
later. Also, we define the corresponding minimization objec-
tive of PG in slot t as fG

t = −
∑

i∈N Ai,t.
Relaxation: To deal with the NP-hardness of PD, we relax

PD to the real domain. We define x̃t as the fraction version
of xt and its domain is X̃ = [0, F ]N0×N+N1 . Thus, we aim
to solve the problem P̃D in real domain:

min
∑T

t=1
ft(x̃t),

s.t.
∑T

t=1
gt(x̃t) ⪯ 0;∀t : h(x̃t) ⪯ 0, x̃t ∈ X̃ .

Lemma 1. P̃D is a convex optimization problem.

Proof. First, ft is the sum of a linear function −Adet
i,t , and

−Atrack
i,t . Since Atrack

i,t is a concave function to F t
i with ϕt

i ∈
[0, 1] and F t

i is a linear function to xt, we can get Atrack
i,t is

a concave function to xt with concave function composition
property. Hence ft is a convex function. Note that gt,h are
composed of linear functions and the domain of x̃t is a convex
set. Therefore, P̃D is a convex optimization problem.

B. Joint Adaptation Algorithm

Queue-Based Approach: Since the problem is an online
long-term optimization, we propose a queue-based approach
to decouple it into a series of subproblems. By solving sub-
problems, we minimize the objective of the original problem
and avoid the long-term constraints being violated heavily.

We introduce a queue for each long-term constraint, aggre-
gated as a vector Qt such that:

∀t,Qt+1 = max{−gt(xt+1),Qt + gt(xt+1)}, (14)
where Qt = [Q1,t, . . . , QN,t, Q

E
t ] ∈ RN+1, and max{·}

means to get maximum for each dimension of vector. In each
slot, Qt updates with increments gt(xt+1) to measure the
accumulative violation of long-term constraints. Specifically,
the first N elements represent the violation of the transmission
budget of each device, which can be caused by network
fluctuation; and the last element represents the violation of
energy consumption, caused by excessive inference in one slot.

Decoupled Subproblem: Considering the accuracy, viola-
tion of transmission and energy, and the regular term jointly,
we optimize the subproblem Pt+1 decoupled from P̃D:

Pt+1 : min
x∈X̃

{
ft(x) + (Qt + gt−1(xt))

Tgt(x) + µ∥x− xt∥22
}

s.t. h(x) ⪯ 0.

Algorithm 1 VisFlow

Input: Tslot, Emax.
1: Initialize step size µt=1/t, Q1=0, g0(·)=0;
2: Initialize x̃1: inferring as many frames as possible on each

device locally;
3: for slot t = 1, 2, . . . , T do

// 1. round x̃t randomly to feasible solution x̂t

4: for x̃t
i,j in x̃t do

5: x̂t
i,j =

{⌈
x̃t
i,j

⌉
,with probability x̃t

i,j −
⌊
x̃t
i,j

⌋
,⌊

x̃t
i,j

⌋
,with probability

⌈
x̃t
i,j

⌉
− x̃t

i,j ;
6: end for
7: Deploy the provisioning x̂t to cameras, offload frames

and get detection results;
8: Update ft and gt using the revealed information;

// 2. solve solution for next slot and update queue
9: Obtain x̃t+1 by optimizing Pt+1;

10: Qt+1 = max{−gt(x̃t+1),Qt + gt(x̃t+1)};
11: end for

At the end of slot t, we solve Pt+1 to get the fractional
decision x̃t+1 using the information shown in the last slot.
The vector Qt + gt−1(xt) measures the violation of gt by
previous decisions. As the violation increases, the optimization
tends to decrease the amount of data transmission or energy
consumption in the current slot to mitigate the violation. And
µ > 0 is the step size, controlling the distance between
decisions in current slot and last slot. Note that due to
Lemma 1 and Qt + gt−1(xt) ⪰ 0, Pt+1 is also a convex
optimization problem which can be solved efficiently.

Randomized Rounding: Although we relaxed the problem
into fraction form and solved x̃t in the real domain, the
number of offloaded inference frames must be an integer.
Thus, we use a randomized rounding strategy to revise x̃t

into a feasible integer provisioning. More specifically, each
element x̃t

i,j in x̃t is rounded to
⌈
x̃t
i,j

⌉
with the probability

of x̃t
i,j −

⌊
x̃t
i,j

⌋
, otherwise to

⌊
x̃t
i,j

⌋
. We highlight that this

randomizing strategy ensures E[xt] = x̃t, which facilitates
our performance analysis later.

Online Adaptation: We propose our algorithm VisFlow
in Algorithm 1, which contains two components: randomized
rounding and queue-based online optimization. As the system
starts running, we first set the initial value for the parameters of
algorithm, as shown in lines 1-2. We set step size as µt = 1/t
to facilitate the analysis later. Note that we manually set the
inference plan in slot 1. In the first component, at the start of
each epoch, we convert x̃t into feasible integral solution x̂t

by randomized rounding, in lines 4-6. In line 7, we deploy the
decision to cameras, each device transmits frames and makes
inferences. In line 8, the functions of slot t are updated using
the accuracy and network status observed when deploying. In
lines 9-10, we get the fractional decision for the next slot using
the newly observed function, and update the queue to measure
the constraint violation.

Parameter Obtaining: As shown in preliminary studies and
previous works [14], [29], ai,mj , Ti,j , di and γi can be
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estimated offline and pre-stored as a table. After deploying the
offloading decision x̃t in slot t, we update the tracking loss by
comparing the detection result and tracking result of the same
frame, and fit ϕ̂t

i using the accuracy difference and continuous
tracking frame number. Also, αt

i can be estimated by the
average detection accuracy using ai,mj

of inferred frames of
device i. The transmission budget Bi can be observed during
data transmission in each slot.

IV. PERFORMANCE ANALYSIS

We first introduce two metrics to measure the performance:
dynamic regret [30], [31] and dynamic violation [32]. Then
we prove that the dynamic regret and dynamic violation of our
algorithm would be sublinear with respect to T , which means
our solution sequence is no worse than the dynamic optimal
solution asymptotically as time length goes to infinity.

A. Metrics of Performance

Dynamic Regret: The dynamic regret is proposed to mea-
sure the difference between the long-term objective of online
decisions {xt} and the dynamic benchmark. The benchmark
{x∗

t } is the solution from optimizing the one-shot problem
in each slot with an oracle that knows the corresponding
inputs in advance. We use {x̂∗

t } and {x̃∗
t } to denote optimal

solutions of dynamic optimization problem in integral and real
domains, respectively. Then the dynamic regret in integral and
real domains is defined respectively as follows:

Regd
T = E[

∑T

t=1
ft(x̂t)]−

∑T

t=1
fG
t (x̂∗

t ), (15)

x̂∗
t ∈ argminx∈X ft(x), s.t. gt(x) ⪯ 0,h(x) ⪯ 0,

R̃eg
d
T =

∑T

t=1
ft(x̃t)−

∑T

t=1
fG
t (x̃∗

t ), (16)

x̃∗
t ∈ argminx∈X̃ ft(x), s.t. gt(x) ⪯ 0,h(x) ⪯ 0,

where the expectation in Eq. (15) is introduced to deal with
randomized rounding.

Dynamic Violation: To guarantee the long-term constraint
is not violated much in the long run, the dynamic violation
is introduced to measure the cumulative violation of the long-
term constraints, incurred by online decisions. Thus, for any
k = 1, . . . , N + 1, we consider the dynamic violation in
integral and real domain as follows:

Viod
T,k = E[

∑T

t=1
gt,k(x̂t)], (17)

Ṽio
d
T,k =

∑T

t=1
gt,k(x̃t), (18)

where gt,k is the k-th element of long-term constraints gt.
Also, we take the expectation of the constraints in Viod

T,k to
eliminate the impact of the randomness.

B. Regret and Violation Analysis

We aim to show the dynamic regret and dynamic violation
of our algorithm are both sublinear to T . To this end, we first
propose several basic assumptions and notations to facilitate
our analysis.

Assumptions: We propose three assumptions as follows:

Assumption 1: The domains of the decision, objective and
long-term constraint can be bounded by a constant respec-
tively, i.e., ∀t,x ∈ X̃ , ∥x∥2 ≤ R, |ft(x)| ≤ F, ∥gt(x)∥2 ≤ G.

Assumption 2: ∀t, gt is Lipschitz continuous with modulus
β, i.e., ∀x1,x2 ∈ X̃ , ∥gt(x1)− gt(x2)∥2 ≤ β ∥x1 − x2∥2 .

Assumption 3: The objective with observable inputs is not
far away from ground truth, i.e.,

∑T
t=1[ft(x̃

∗
t )−fG

t (x̃∗
t )] ≤ θ0.

We note that Assumption 1 bounds the domain of individual
decisions in each slot and their impacts on accuracy, latency
and energy cost, so that an occasional bad decision only has
limited impact on overall performance. Assumption 2 is the
standard Lipschitz assumption, which is common in primal-
dual online algorithm analysis. Assumption 3 ensures that the
optimal solution of PD is approximately optimal to PG.

Notations: We quantify the total variations of dynamic
optimal point sequence {x̃∗

t } as

Vx =
∑T

t=1

∥∥x̃∗
t+1 − x̃∗

t

∥∥
2
. (19)

Then, we define the variation of dual optimal solution se-
quence {λ∗

t } as

Vλ =
∑T

t=1

∥∥λ∗
t+1 − λ∗

t

∥∥
2
. (20)

Furthermore, we define the total variation of accuracy ft,
transmission and energy constraint gt, and also total squared
variation of gt:

Vf =
∑T

t=1
max
x∈X̃

{|ft+1(x)− ft(x)|} , (21)

Ṽg =
∑T

t=1
max
x∈X̃

{|gt(x)− gt−1(x)|} , (22)

Vg =
∑T

t=1
max
x∈X̃

{
∥gt(x)− gt−1(x)∥22

}
. (23)

Lemma 2. With the definition of dynamic regret and constraint
violation in integral and real domains, we have ∀k,

Regd
T ≤ R̃eg

d
T +Mσβ , Viod

T,k = Ṽio
d
T,k, (24)

where Mσβ is a constant upper-bound introduced by Jensen
gap [33].

Proof. See Appendix A.

Theorem 1. The dynamic regret and dynamic violation in
integral domain are upper-bounded respectively as:

Regd
T ≤ RT , Viod

t,k ≤ VT , (25)
where RT = Vf + Vg + 4µRVx + C1, VT = 4Vλ + 2

√
Vf +√

2Vg + Ṽg +
√
8µRVx + C2, and C1, C2 are constants.

Proof. See Appendix B.

Corollary 1. By selecting proper step sizes in each slot,
the dynamic regret and violation of our algorithm only grow
sublinearly with respect to T :

Regd
T = o(T ), Viod

T,k = o(T ), (26)

if Ṽg, Vλ are sublinear to T and Vf , Vg are o(T 2) to T .

Proof. From the definition of RT and VT , by setting the step
size as µ = o(T/Vx), we have 4µRVx = o(T ) in RT and√
8µRVx = o(T 1/2) in VT . Thus, each component of upper

bound RT or VT belongs to o(T ), o(T 1/2) or a constant, which
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Fig. 5: Devices Used in Testbed and Our Dataset

derives the corollary. Note that we set µt = 1/t in Algorithm 1
to ensure the corollary stands when Vx is o(T 2), which fits
almost all the cases.

V. IMPLEMENTATION AND EVALUATION

A. Implementation

We implement VisFlow on four Nvidia Jetson Developer
Kits as a testbed, including Xavier NX, TX2, AGX Xavier and
AGX Orin, with increasing capabilities, as shown in Fig. 5(a).
The devices have heterogeneous resources: For CPU, the
devices have a minimum 6-core Carmel CPU and a maximum
12-core Cortex ARM CPU; For GPU, it varies from a 384-
core Volta GPU to a 2048-core Ampere GPU. Thus, NX and
TX2 are treated as weak devices, while Xavier and Orin are
strong devices. The devices are connected to a campus local
area network, and the bandwidth fluctuates around 8-13MB/s
most of the time. The system is implemented in Python 3.8
environment, and the main techniques are as follows:

(1) Tracker: We use optical flow method in OpenCV as the
tracker on devices, implemented by calcOpticalFlowPyrLK ,
which can run in real-time on each device.

(2) Detection Models: We use YOLOv7/v7x/e6/d6 as the
detection model for each device respectively, and a stronger
device is deployed with a larger model to provide accurate
detections. Note that YOLO (and some other models like
Faster-RCNN [34]) support flexible input sizes, and previous
works [35] have shown that the inference time grows linearly
regarding the number of pixels.

(3) Decision Scheduler: The decision is calculated by a
convex programming solver cvxpy in Python. In each slot, we
need to solve Pt+1 using about 100 ms in our settings, which
is deployed on Orin with sufficient CPU resources, avoiding
interference with other computations. In practice, we believe it
is best to use a separate device to avoid resource competition.

B. Data and Settings

Dataset and Parameters: We compare different approaches
on surveillance videos. We build a dataset using the camera
streams from Youtube [25], [26], [36], [37] and PANDA
dataset [38], covering both traffic and campus scenes, as shown
in Fig. 5(b). For traffic camera lives, we collect both day and
night videos to capture varying video content. The videos are
30fps and vary from 360p to 1080p, and a weak device like
NX has 360p video to ensure it can afford the inference. The
results of a large model, YOLOv7-e6e, is regarded as the
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ground truth, which is consistent with previous works [39],
[40]. We measure the inference energy cost γi for devices
from NX to Orin as 5.42W, 13.35W, 17.92W, and 24.24W
respectively. Each slot is set to 1s to ensure timely adaptation.

Algorithms: Besides evaluating our method VisFlow, we
compare it with algorithms as follows:

• Local: Each device separately conducts as many as
possible inferences for its video stream in local.

• Weak Device Priority (WeakPri): Each strong device
uses half the time to process its frames, and each weak de-
vice offloads as many frames as possible to the strongest
devices successively, considering the device capability
and the network status of the last slot.

• Uniform Provisioning (UniProv): Ensure that the video
of each device is detected at the same frequency when
offloading under constraints. If any device has spare com-
puting resources after offloading, it detects for its own.

C. Testbed Results

Accuracy and Latency: First, we compare the overall
accuracy and latency distribution of different methods. In
Fig. 6(a), with proper frame inference offloading, VisFlow gets
average accuracy of 0.718, while Local, WeakPri, and UniProv
only get 0.607, 0.667 and 0.652 respectively. In addition,
since VisFlow makes more detection for cameras with higher
detection demands, the analysis quality is more robust with
less low accuracy values and higher aggregation. In Fig. 6(b),
we depict the end-to-end latency distribution of frames, i.e., the
time between the frame and its result. Although VisFlow has
an average latency slightly higher (about 18%) than WeakPri
and UniProv due to more frame offloading and transmission,
the real-time capability actually depends on the longest end-to-
end latency of frames. To exclude the outliers, we use the 95th
percentage of latency to measure the real-time performance.
VisFlow has 95% frames getting results within 611ms, which
means we get real-time analytics for 95% frames with a lag of
611ms. However, due to high inference latency or neglect of
network fluctuation, the lags of Local, WeakPri and UniProv
are 938ms, 912.2ms, and 677.3ms respectively.
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Detailed Detection Results: Then we explore the source of
the accuracy difference between methods in detail. Fig. 7(a)
illustrates that VisFlow’s main improvement comes from the
tracking accuracy. While our detection accuracy is only higher
than other methods by about 3%, the tracking accuracy is
higher than other methods by 36.3%, 9.3% and 11.9% respec-
tively. It shows that VisFlow effectively decreases tracking
drift and long-term tracking loss. Fig. 7(b) further depicts
how VisFlow decreases tracking drift. It shows that VisFlow
conducts 1,273 detections per minute on average, and is
higher than others by 31.2%, 34.6% and 14.5% respectively.
Further, VisFlow shows proper provisioning between devices.
Contrarily, Local has 62% of inference performed for Orin due
to uneven resources, WeakPri puts too much for the weakest
device, and UniProv’s balancing strategy is non-optimal.

Workload Balancing: Furthermore, we explore the process
of workload balancing in VisFlow with network fluctuations.
Fig. 8(a) shows the percentage of transferred data of each
device compared to the total transmission in each slot, and
Fig. 8(b) depicts how much of the device’s workload is for
other devices’ inference tasks (for weak devices, the value is
0 since they don’t receive tasks). It depicts that Orin receives
most of transmission data and workload from offloading due
to strong capability and offloading decisions in the beginning.
In slots 13-40, the network of Orin fluctuates and the trans-
mission budget decreases rapidly, thus VisFlow transforms
the offloaded workloads from weak devices to Xavier as a
substitution. After the recovery of Orin, the workload is mainly
transferred back to Orin for lower inference latency.

Flexible Adaptation: Fig. 9 shows the flexible adaptive
decisions regarding varying constraints in VisFlow. Fig. 9(a)
depicts the transmission and accuracy variation of weak device
NX when facing network congestion. As bandwidth decreases
from 10 to 0.5, the scheduler also reduces the sending data size
to fit the budget, which is promoted by the queue. As a result,
NX has to conduct detections locally with high latency and
long-term tracking, thus the accuracy decreases from 0.75 to
0.65 temporally. Further, the transmission and accuracy both
recover after the network congestion is over. Fig. 9(b) shows
the performance of VisFlow with varying energy consumption
limits. As the energy limit proportion decreases from 1 (i.e.,
no limit) to 0.2, the energy consumption of Orin, Xavier, TX2
and NX reduces 81.9%, 96.7%, 60% and 62.2% respectively.
Thus, with limited energy, the system should give priority to
reducing the usage of strong devices which cost more energy.

Large-scale Verification: Finally, we verify the perfor-
mance of VisFlow with large-scale cameras. In Fig. 10(a), we
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upscale the device number to 10, 20, 40 and 60 respectively
and keep the proportion of Orin, Xavier, TX2 and NX num-
ber as 1:2:3:4. As the device number increases from 10 to
60, VisFlow increases the accuracy by up to 16.6%-25.9%
compared with other methods. With a larger scale, VisFlow
shows greater superiority due to proper inference provisioning
regarding video content and network status compared with
other methods. Fig. 10(b) takes the scene with device number
40 as an example to depict accuracy distribution for each
method. It shows that VisFlow also decreases the tail accuracy
and gets more aggregated high-accuracy results for all frames
by jointly optimizing tracking and detection accuracy.

VI. RELATED WORK

Detection-with-Tracking Framework: Considering lim-
ited camera resources, some works are based on “detection-
with-tracking” framework to achieve real-time analytics.
Glimpse [7] proposes to combine detection and tracking,
and only trigger detection when there is a great deviation
between consecutive frames. Liu et al. [41] propose to use
motion vectors extracted from encoded frames to perform
object tracking, which helps save time. Reducto [6] explores
different video features to measure the deviation like edge,
pixel and area, and select different features and thresholds for
varying analytics tasks and video content. Hanyao et al. [16]
adaptively select the best threshold to trigger edge-assisted
detections. EdgeDuet [42] offloads small objects to edge
servers with tile-level parallelism, and adopts single-object
tracker KCF for other objects locally.

However, the works above are all assisted by edge servers,
which can be influenced by fluctuating network environment
and brings high network cost. In addition, they ignore to make
full use of camera-side resources.

Video Analytics with Distributed Cameras: Some works
investigate the video analytics system deployed with dis-
tributed cameras. LEVEA [17] offloads computation between
edge nodes and clients using edge-first strategy, and formu-
lated an optimization problem to minimize the response time.

2026Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2024 at 03:06:03 UTC from IEEE Xplore.  Restrictions apply. 



Long et al. [18] study cooperative processing on mobile
devices for delay-sensitive video processing tasks, and propose
algorithms to map devices and video chunks to proper pro-
cessing groups. SurveilEdge [19] proposes an intelligent task
allocator to achieve a latency-accuracy tradeoff and balance the
load among computing nodes, supporting large-scale surveil-
lance video streams. Distream [20] designs a mechanism
to adapt to the workload dynamics on the smart camera-
edge cluster architecture, which smartly partitions workloads
between cameras and the edge cluster.

And some works [43]–[46] also exploit and utilize spatial
and temporal locality in distributed camera networks. Rex-
Cam [45] and Spatula [43] build a cross-camera correlation
model based on historical traffic patterns and use it to fil-
ter frames or prune the search space of a query identity.
CrossRoI [44] removes the repentant appearances of identical
objects in multiple cameras without harming accuracy. Li
et al. [46] enable co-located cameras with overlapping fields
of view to share inference results, eliminating redundant
inferences.

However, the works above fail to consider the tracking
technique to assist video analytics on the camera side, and
some of them still rely on edge servers to make inferences.

VII. CONCLUSION AND FUTURE WORK

Live video analysis on collaborative heterogeneous cameras
plays an important role in surveillance and public safety. In this
paper, we propose a content-aware inference offloading mech-
anism to perform more detections for cameras with higher
detection demands in a detection-with-tracking framework. We
formulate the problem considering tracking drift, detection
quality and limited resources. The problem maximizes the
long-term overall accuracy under constrained computational,
network and energy resources. The testbed on real-world
videos confirms that our approach improves the accuracy by
up to 18.3% compared to the alternatives.

Despite our work, several areas warrant further exploration.
First, attaining real-time analytics on distributed cameras
presents an intriguing challenge, for example, bandwidth allo-
cation could be explored subsequently to orchestrate more ef-
fective transmissions. Second, some devices at edges could po-
tentially support multiple models, which would afford greater
flexibility in detection offloading and is a promising avenue
for future investigation.

APPENDIX

A. Proof of Lemma 2

Proof. First, note that x̂t is a random variable vector with
E[x̂t] = x̃t. Using the definition in (15), we have

Regd
T

(27a)

≤ E
[∑T

t=1
ft(x̂t)

]
−
∑T

t=1
fG
t (x̃∗

t )

(27b)

≤
∑T

t=1
ft(x̃t) +Mσβ −

∑T

t=1
fG
t (x̃∗

t )

(27c)
= R̃eg

d
T +Mσβ , (27)

where Inequality (27a) holds due to the real optimum solution
is better than the integral optimum solution; Inequality (27b)
utilizes the Jensen gap in [33] and Mσβ is introduced as
constant bound related to the variation of ft; Equality (27c)
holds using the definition in (16).

Using the definition in (17), we have ∀k,

Viod
T,k = E[

∑T

t=1
gt,k(x̂t)] =

∑T

t=1
E [gt,k(x̂t)] (28)

(28a)
=

∑T

t=1
gt,k(E [x̂t]) =

∑T

t=1
gt,k(x̃t) = Ṽio

d
T,k,

where Equality (28a) holds since gt,k is linear and the linearity
of expectation.

B. Proof of Theorem 1

Proof. Bound Regd
T : From the update strategy of the virtual

queue, we have ∀t, k,Qt+1,k = max{−gt,k(xt+1), Qt,k +
gt,k(xt+1)}. Thus, it is satisfied that ∀t,

∥Qt+1∥2 = (
∑N+1

k=1
|Qt+1,k|2)

1
2

≥ (
∑N+1

k=1
| − gt+1,k|2)

1
2 ≥ ∥gt(x̃t+1)∥2 . (29)

According to [32], we obtain:
T∑

t=1

ft(x̃t)−
T∑

t=1

ft(x̃
∗
t ) ≤

1

2
∥gT (x̃T+1)∥22−

1

2
∥QT+1∥22

+Vf +Vg +4µRVx + ∥g1(x̃1)∥22+F+f1(x̃1)+∥x̃1−x̃∗
1∥

2
2

(30a)

≤ Vf + Vg + 4µRVx + C0 (30)
where Inequality (30a) holds by applying (29) and representing
the sum of constants by C0. Then, we can derive that

R̃eg
d
T =

∑T

t=1

[
ft(x̃t)− fG

t (x̃∗
t )
]

=
∑T

t=1
[ft(x̃t)− ft(x̃

∗
t )] +

[
ft(x̃

∗
t )− fG

t (x̃∗
t )
]

(31a)

≤ Vf + Vg + 4µRVx + C0 + θ0, (31)
where Inequality (31a) holds by plugging (30) and Assump-
tion 3. Utilizing Lemma 2, we have

Regd
T ≤ R̃eg

d
T +Mσβ ≤ Vf + Vg + 4µRVx + C1, (32)

where C1 = C0 + θ0 +Mσβ is a constant.
Bound Viod

T : According to [32], we have
∥QT ∥2 ≤ 4Vλ + 2

√
Vf +

√
2Vg +

√
8µRVx + C ′

0, (33)

where C ′
0=

√
G2+4F+2µ∥x̃1−x̃∗

1∥
2
2+2∥g1(x̃1)∥22+2∥λ∗

1∥2.
Then using Lemma 2, we obtain

Viod
T,k = Ṽio

d
T,k =

∑T

t=1
gt,k(x̃t) ≤

∑T−1

t=1
gt,k(x̃t+1)

+ g1,k(x̃1) +
∑T−1

t=1
|gt+1,k(x̃t+1)− gt,k(x̃t+1)|

(34a)

≤ g1,k(x̃1) +QT,k + Ṽg ≤ g1,k(x̃1) + ∥QT ∥2 + Ṽg

(34b)

≤ 4Vλ + 2
√
Vf +

√
2Vg +

√
8µRVx + C2, (34)

where Inequality (34) holds due to the queue updating and
plugging (22); Inequality (34) holds by applying (33) and
defining C2 = C ′

0 + g1,k(x̃1) as an constant.
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