
IEEE TRANSACTIONS ON NETWORKING 1

Spliceosome: On-Camera Video Thinning and
Tuning for Timely and Accurate Analytics

Ning Chen , Sheng Zhang , Senior Member, IEEE, Jie Wu , Fellow, IEEE, He Huang , Senior Member, IEEE,
and Sanglu Lu , Member, IEEE

Abstract— Running deep neural networks (DNNs) on
large-scale videos from widely distributed cameras presents
two significant challenges. Firstly, video quality for analytical
purposes is severely impacted by the camera deployment envi-
ronment, which is termed Pixel Recession in this paper. Secondly,
low-latency video streaming from the source camera to edge
servers is greatly hindered by the rapid expansion of video traffic.
Despite numerous efforts such as enhancing the video structure,
uneven encoding, and filtering frames captured on camera, these
methods have proven insufficient to address the challenges at
hand. We propose Spliceosome, a novel video analytics system
that effectively overcomes the pixel recession and streaming
bottlenecks. In brief, Spliceosome 1) recovers from pixel recession
by adaptive video knobs (i.e., brightness and contrast) tuning
in ARP (anchor region proposal) granularity, and 2) lowers
the transmission volume by video thinning, which uses only
single-channel information for video encoding. We implemented
Spliceosome using only commercial off-the-shelf hardware. Our
experimental results demonstrate that Spliceosome outperforms
other alternative designs by 4.71-14.47%, 40.94-58.71%, and
14.28% in detection accuracy, end-to-end delay, and efficiency
of DNNs inference, respectively.

Index Terms— Video analytics, video quality for analytical
purpose, anchor region proposal, single-channel codec.

I. INTRODUCTION

EMPOWERED by the emerging computer vision, video
analytics applications ran on mobile (edge) devices are

widely used in business (industrial logistics, home assistance,
retail, etc) and public (urban planning, traffic management, etc)
fields [1], [2], [3], [4], [5], [6]. In real-world deployment, most
video applications apply the developed deep neural networks
(DNNs) to analyze the massive videos from widely distributed
edge video sensors (cameras), leading to an explosive growth
of video data [7], [8] for analytical purposes rather than human
users entertainment [8], [9], [10] by watching.

In general to acquire the analytics result of a captured
video chunk, it undergoes three key procedures [13], [41],
including on-camera processing (e.g., video compressing and

Received 15 July 2024; revised 12 November 2024; accepted 2 January
2025; approved by IEEE TRANSACTIONS ON NETWORKING Editor L. Fu.
This work was supported in part by the Nanjing Key S&T Special Projects
under Grant 202309006 and in part by NSFC under Grant 62332013.
(Corresponding author: Sheng Zhang.)

Ning Chen and He Huang are with the School of Computer Sci-
ence and Technology, Soochow University, Suzhou 215006, China (e-mail:
ningc@smail.nju.edu.cn; huangh@suda.edu.cn).

Sheng Zhang and Sanglu Lu are with the State Key Laboratory for Novel
Software Technology, Nanjing University, Nanjing 210093, China (e-mail:
sheng@nju.edu.cn; sanglu@nju.edu.cn).

Jie Wu is with the Center for Networked Computing, Temple University,
Philadelphia, PA 19122 USA (e-mail: jiewu@temple.edu).

Digital Object Identifier 10.1109/TON.2025.3526218

encoding), network bitrate transmission, and on-server DNNs
inference. An ideal video analytics system should meet three
requirements that are vital to analytics applications: 1) low
resource (i.e., storage and computation) overhead on mobile
camera, 2) low end-to-end delay resulting from video encoding
and data transmission from camera to centralized edge server,
and 3) high inference accuracy through DNNs inference. It is,
however, non-trivial to satisfy them simultaneously, since it
often requires efficient management of many factors, such as
the video quality for analytical purpose, network status for
end-to-end data transmission, and balance between analytical
performance and overhead. In particularly, we summarize two
critical challenges below:

First of all, the deployment environment for mobile cameras
in the real world is inherently dynamic and uncertain, which
results in that the quality of video captured for analytical pur-
poses (as opposed to human-perceived visual quality) varies
over time, thus probably giving rise to poor analytics perfor-
mance. We take object detection application as an example to
illustrate this problem (called pixel recession in Section II-B).
For these videos captured in a blurry environment due to
factors such as day-night alternating or camera deployment
(e.g., commonly under a huge tree without light), it probably
fails to accurately detect the target objects. In this dilemma,
optimizing the compression and encoding procedures [14],
[37] or improving human-perceived visual quality [15], [61]
is ineffective to improve the accuracy. One could employ
a specific method to enhance the blurry video. However,
performing pixel-level video enhancement is challenging due
to the lack of a solid theoretical basis.

Second, it is essential to address the conflict between
streaming a large amount of video and providing time-varying
network bandwidth. While video compression techniques par-
tially reduce data volume, the expanding scope and scale
of camera deployments in cities and organizations gen-
erate video traffic for analytical uses, which occupies a
substantial portion [7], [8], resulting in significant end-to-
end streaming delays. This challenge is exacerbated when
there is increased competition for limited bandwidth among
multiple mobile cameras in unreliable network connections.
Additionally, cameras with limited-capacity batteries make
it unfeasible to continuously transmit high-volume video
data.

Unfortunately, the current research is insufficient in
addressing the aforementioned challenges. Mainstream video
enhancement methods primarily concentrate on enhanc-
ing structural quality (measured by SSIM or PSNR [16])
through encoding optimization [14], [37] and super-resolution

2998-4157 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Soochow University. Downloaded on March 10,2025 at 04:43:17 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0722-1757
https://orcid.org/0000-0002-6581-6399
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0003-2768-6607
https://orcid.org/0000-0003-1467-4519

2 IEEE TRANSACTIONS ON NETWORKING

techniques [15], [18], [19], [20], [61]. However, none of
the previous studies have addressed the critical concern of
improving the quality of analytics-based video by address-
ing pixel recession. Although various research efforts have
attempted to reduce the volume by utilizing camera-side
heuristics to filter out redundant pixels, the camera with limited
resources cannot efficiently identify the superfluous pixels.
Several subsequent proposals with low camera-side overhead
and high analytical accuracy have emerged [13], [17], [37].
These proposals require sending content to a centralized server
for DNN inference and receiving the results, which optimize
the camera’s RoI (Region of Interest) encoding operation but
result in increased end-to-end delay.

To overcome the above two challenges, this paper introduces
Spliceosome,1 a novel video analytics system that satisfies
the three requirements previously mentioned. The develop-
ment of Spliceosome was motivated by two observations
(discussed in Section II): 1) the poor analytical accuracy
caused by pixel recession is primarily due to inadequate video
brightness and contrast; therefore, adaptively adjusting these
parameters shows potential to improve performance, and 2)
instead of feeding information from all channels into DNNs for
inference, employing pixels from a single channel can attain
high accuracy, significantly reducing end-to-end transmission
volume and server-side inference computation. Spliceosome
consists of three essential components, namely the Anchor
Region Proposal Builder, the F1_AccGrad Scheduler, and the
Single-Channel Codec.

Given the limited resources available on mobile cameras,
Spliceosome proposes performing region-level optimization
rather than computationally expensive frame-level operations,
which aligns with the fact that only partial regions of the
frame contain the target objects. The Anchor Region Proposal
Builder is responsible for producing these target regions.
Unlike other approaches [13], [37] that use server-driven
feedback to identify regions, Spliceosome leverages the local
motion vector that indicates the offsets between frames. It first
applies a three-step clustering algorithm to the extracted
motion vectors of the current frame to generate the initial
anchor region proposals (ARPs). To address the potential issue
of incomplete target object coverage, it then designs a padding
mechanism to expand the initial ARPs. Through these two
stages, the final ARPs are generated.

To address the issue of pixel recession, Spliceosome pro-
poses an F1_AccGrad Scheduler to automatically adjust the
brightness and contrast for each ARP. Preliminary results
show that when fixing brightness, the detection accuracy
increases monotonically with an increase in contrast, but the
marginal improvement diminishes. Conversely, when fixing
contrast, accuracy significantly improves at first but gradually
decreases if the brightness exceeds a specific threshold. The
concavity of these two relationships allows for the application
of alternate gradient ascent to obtain the global optimum [26].
As there is no closed-form equation for the accuracy and its

1The spliceosome is responsible for removing introns, which are non-coding
regions of the pre-mRNA transcript, and joining together the exons, which are
the coding regions of the pre-mRNA transcript, to produce a mature mRNA
molecule that can be translated into protein.

derivative, Spliceosome uses a numerical method to derive the
approximate gradient.

Having finished the above procedures, Spliceosome uses
Single-Channel Encoder to encode the video. It is based
on the open-source x265 HEVC Encoder [27], with three
modifications. Firstly, for the YUV format (i.e., YCbCr), it sets
Cb and Cr to 0 directly, which significantly accelerates video
encoding. Secondly, in the stage of chroma subsampling,
it only maintains luma information (i.e., Y), further reducing
the video volume. Finally, it introduces an uneven QP (Quan-
tization Parameter) value assignment for ARPs and non-ARPs,
which matches the variation of network bandwidth.

By seamlessly integrating the above three modules, Spliceo-
some not only significantly reduces end-to-end delay and
server-side overhead but also effectively mitigates the accuracy
degradation caused by pixel recession. Moreover, with no
strict hardware requirements, Spliceosome can be ported to
any operating system. We implemented Spliceosome using
commercial-off-the-shelf hardware and used two types of
videos, BridgeCam LIVE [21] and Rotary Traffic Live [22]
from YouTube [23], to evaluate Spliceosome’s perfor-
mance. The experimental results demonstrate that Spliceosome
enhances detection accuracy by 4.71-14.47%, reduces the aver-
age response time by 40.94-58.71%, and speeds up inference
by 14.28% compared to state-of-the-art designs. In summary,
our work makes the following key contributions:
• On-camera ARP generation. By utilizing camera-side

resources to run lightweight clustering and padding on the
extracted motion vector, Spliceosome is able to accurately
build the potential ARPs.

• Analytics-oriented pixel-level video enhancement. By
adaptively tuning video knobs (i.e., brightness and con-
trast), Spliceosome significantly improves the detection
accuracy though facing pixel recession.

• Efficient single-channel encoding. By discarding the
chroma information in two channels, Spliceosome largely
accelerates the camera-side encoding and server-side
inference.

II. MOTIVATIONS AND CHALLENGES

We start with the performance metrics for mainstream video
analytics applications, then we point out several potential
limitations of prior system designs, and finally we present our
critical ideas to improve them.

A. Video Analytics Evaluation Metrics

Target Applications. In this paper, we focus on those appli-
cations that use state-of-the-art convolutional neural networks
(CNNs) to run a variety of complicated vision tasks. Exam-
ples include object detection, face recognition and semantic
segmentation. Typically, these applications involve feeding a
video frame into a well-trained CNN network, which produces
detailed results such as bounding boxes with corresponding
classified object types or facial key points. These fundamental
applications are widely used in real-world scenarios such as
vehicle collision detection, security authentication systems,
and human-computer interaction.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Soochow University. Downloaded on March 10,2025 at 04:43:17 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: SPLICEOSOME: ON-CAMERA VIDEO THINNING AND TUNING FOR TIMELY AND ACCURATE ANALYTICS 3

Performance Metrics. An ideal end-to-end video analytics
system should prioritize two key metrics, i.e., analytical accu-
racy and response time.
• Analytical accuracy: For each frame that is streamed to

a server, we define its accuracy as the similarity between
the DNN output of this frame and the output of its
corresponding highest-quality (or optimal-configuration)
frame. Rather than human-annotated labels, we use the
DNN output on the highest-quality frame as the “ground
truth”. This method is consistent with recent studies [13],
[40], [49], [52]. We evaluate the accuracy by F1 score
(i.e., the harmonic mean of recall and precision for the
detected objects’ locations and class labels) in object
detection application and by IoU (i.e., the intersection
over union to measure the degree of overlap between
the predicted segmentation map and the ground truth
segmentation map) in semantic segmentation.

• Response delay: it consists of two key components.
The first is the end-to-end delay, which results from
on-camera processing such as video encoding and stream-
ing from the camera to an edge server. The end-to-end
delay largely depends on the video compression ratio
and network connection status. The second component
is the inference delay, which is caused by DNN forward
propagation and is subject to the model’s complexity and
input frame size. If the system enables these components
to be pipelined and executed in parallel, we take the
average response delay as the measurement metric.

B. Limitations of Previous Work

Case for Improving Detection Accuracy. Current stud-
ies that aim to optimize analytical performance can be
broadly categorized into two approaches. The first approach,
an encoding-driven method [14], [37], assigns a higher
bitrate to encode the potential regions that contain the target
object. The second approach, a neural super-resolution-based
method [18], [19], [20], upscales the low-resolution video,
which significantly improves detection accuracy, especially for
small objects. However, the former lacks effective methods
to identify the target regions, while the latter causes extra
inference overhead due to compute-intensive neural super-
resolution, which largely affects real-time video analytics.
Although these designs focus on enhancing the video’s struc-
tural quality measured by SSIM or PSNR [16], they prove
inefficient when encountering a phenomenon known as pixel
recession, which occurs when the pixels that make up a
target object gradually blend with the background pixels due
to changing light conditions or camera deployment, such as
when the camera is placed under a large tree without light.
This makes the object unrecognizable to support accurate
analytics, hence we call the Pixels are in Recession. In this
case, preserving high structural quality is probably ineffective.

Specifically, we take Fig. 1 as an example to further
understand pixel recession. We first record three video frames
of BridgeCam LIVE [21] from YouTube [23] at three time
point (i.e., 12:00 pm, 17:00 pm and 24:00 pm), and then we
run the state-of-the-art detection algorithm model yolov5 [29]
on them. It’s clear that in Fig. 1a, all the objects are accurately

Fig. 1. Video analytics at different times of a day.

detected, but in Fig. 1b at 17:00 pm, it misses a car and
outputs classes with low confidences. What’s worse in Fig. 1c,
it unexpectedly misses all the target objects. Investigate its
reasons, the car pixels are extremely similar to pixels of
background (e.g., bridge). Though in Fig. 1b and Fig. 1c
several lamps are deployed for illumination, it is still hard to
distinguish the cars from the dark. For another instance in real
scenarios, criminals prefer drive the car in a dark environment
to avoid tracking, and animals disguise their appearance as
similar as surroundings for hunting or escaping.
Case for Optimizing Average Processing Time. To reduce
the end-to-end delay by decreasing the streaming vol-
ume, a widely used approach is to implement camera-side
logic [11], [12] to filter out frames that are irrelevant or
redundant to the vision tasks. This method is effective when
the video content is relatively stationary, such as in wildlife
camera feeds, where the background is static and animals are
rare, resulting in the filtering out of massive frames. However,
for frames that cannot be discarded, the camera encodes the
entire frames with equal quality. This approach is suboptimal
since the objects of interest are sparsely distributed in each
frame. Some works [24], [41] use local heuristics to lower
the quality of the background, and send quality-enhanced
object-related areas (e.g., region-of-interest encoding [37]) to
the server for DNN inference. Nevertheless, these on-camera
heuristics are limited by local compute resources, leading to
significant identification time and false negatives (i.e., object-
related regions being regarded as background and sent in low
quality, causing the server to miss the target objects).

To address this issue, a follow-up approach [13], [37]
streams low-resolution videos to a powerful server, which
leverages its sufficient resources to output and return the
initial results. Based on these results, the camera resends the
regions that are not well-detected. Although this mechanism
effectively lowers the transmission volume while maintaining
high accuracy, it may suffer from an expensive response delay.
For example, in the work by DDS [13], when faced with a
terrible network status, the camera takes at least two network
round-trip times (RRTs) to receive server-driven feedback
before executing video encoding, resulting in high response
time on each frame.

C. Potential Room for Optimization

Recovery from Pixel Recession. As previously stated, the
analytical performance of vision application is significantly

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Soochow University. Downloaded on March 10,2025 at 04:43:17 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NETWORKING

Fig. 2. Motivations. (a) the detection accuracy under different knobs, (b) the statistical knobs at different time points, and (3) the achieved performances
under diverse encoding schemes.

influenced by the deployment of the camera and the variations
in the surroundings. In order to identify the underlying reason
for this phenomenon, we have introduced two critical knobs,
namely video brightness and contrast.2 To investigate the
correlation between these two parameters and the detection
accuracy (i.e., F1 score), we have extracted 350 video frames
from BridgeCam LIVE [21] at different time intervals and
conducted the analysis using the yolov5 [29] model with the
NVIDIA RTX 2080 Ti GPU. As depicted in Fig. 2a, the
detection accuracy improves significantly with an increase in
video brightness initially, but gradually decreases beyond a
specific threshold (e.g., around 100). For videos with a low
initial contrast, even a slight increase in contrast leads to
remarkable improvement in detection F1 score, but the benefit
eventually becomes marginal. Therefore, a video is considered
to be in a pixel recession state when its brightness and contrast
parameters are not adequate to support precise video analytics.

Hence to resolve pixel recession, an intuitive approach
is to continuously adjust the video brightness and contrast
until achieving optimal detection accuracy. As Fig. 2b shows,
we count the brightness and contrast for each hour. Based
on the observation in Fig. 2a, it is suggested to decrease
brightness from 8:00 to 16:00 and increase it at other times.
Similarly, we propose to increase contrast significantly before
10:00 and after 17:00. By following this approach, we can
ensure that the video analytics system operates optimally,
resulting in accurate and reliable detections.
Optimization of Video Encoding. As described before, the
server-side DNN-driven method for conducting quality-uneven
encoding is often hindered by unreliable network connections.
Recent years have witnessed the rapid growth in compute
capacity of mobile device (e.g., NVIDIA JetSon Nano, TX2,
and Xavier NX), which allows for relatively complex algo-
rithms to be run locally on the device. Despite this, running
camera-side DNN-based algorithms to identify regions of
interest remains a challenge, particularly when the camera is
powered by a battery with limited capacity. Fortunately, the
Motion Vector (MV) commonly used in existing video codecs
(e.g., H.264 and H.265) to indicate pixel offsets among frames
provides a promising method for locating Anchor Region
Proposals (ARPs) that contain moving objects.

2For a video frame f with pixel size M×N , we define its brightness Bf =∑M
i

∑N
j

pi,j

M×N
, and contrast Cf =

∑M
i

∑N
j

∑δi,j

k |pi,j − k|2/(Sf),
where pi,j indicates the pixel value of point (i, j), δi,j represents the neighbor
points set of (i, j) and Sf is the number of adjacent pixel pair (4M ×N by
default in this paper).

In a typical video analytics system, three-channel videos
(i.e., RGB or YUV) go through multiple stages including video
splitting, intra prediction, inter prediction, DCT transforma-
tion, quantization, entropy encoding, and bitstream generation
to reach the remote server for DNN inference, which incurs
significant end-to-end delays in three-channel granularity.
Can we reduce this delay by using only one channel of
information? To investigate the feasibility, we implemented
some optimizations (detailed in Section VI) based on the
open-source x265 HEVC Encoder [27], and re-encoded live
videos [21] using one channel and three channels separately.
We then fed these two types of videos into DNNs for inference.
Note that the HEVC Encoder first transforms the video format
from RGB to YUV based on the ITU-R standard [28], and we
use the information of the Y channel (i.e., luma information)
or any one channel from R/G/B for single-channel encoding.
As Fig. 1d shows, it achieves the similar detection result to that
in Fig. 1a, which uses three-channel information for encoding.
Fig. 1c illustrates the average performance in three metrics.
Single-channel encoding outperforms the traditional method
by 58% and 22% in terms of data volume and inference delay,
respectively. Moreover, compared to a 19% accuracy drop
when using any one channel of RGB, the Y-channel-based
method incurs only a 5% accuracy loss, primarily because Y
is derived from RGB and contains the key information of RGB.

D. Design Challenges

There are several key challenges to fulfill these designs:
• Online brightness and contrast adjustment. Given the

significant variation of video knobs in different cam-
era surroundings, continuous adjustments are crucial to
adapt to such changes. However, the absence of a solid
theoretical foundation makes it difficult to conduct such
adjustments. Furthermore, calculating frame-level con-
trast on the camera-side is expensive, which can affect
the real-time capabilities of video analytics.

• MV-based ARP prediction. When the object pixels closely
resemble the surrounding pixels (i.e., pixel recession)
or when the object is situated far from the camera,
the extracted MVs may not sufficiently cover the entire
object.

• Single-channel video codec. Deciding which channel
information to use for video encoding is a non-trivial
task. Since most video codecs are oriented towards
three-channel video, it is essential to design an efficient

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Soochow University. Downloaded on March 10,2025 at 04:43:17 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: SPLICEOSOME: ON-CAMERA VIDEO THINNING AND TUNING FOR TIMELY AND ACCURATE ANALYTICS 5

Fig. 3. Spliceosome system architecture. We present the system using an
object detection example.

mechanism for transplanting the single-channel encoding
approach into existing codecs.

III. SYSTEM OVERVIEW

In this section, we introduce Spliceosome, an innova-
tive solution specifically designed to tackle both challenges
1 and 2 concurrently. Unlike traditional methods that rely
on optimizing frame-grained parameters such as brightness
and contrast across the entire video, Spliceosome takes a
novel approach by lowering the adjustment granularity and
focusing on region-oriented modifications. This strategic shift
allows Spliceosome to better target specific areas within each
frame that require enhancement, thereby efficiently addressing
the issue of pixel recession, which can significantly impair
video analysis tasks. By employing this method, Spliceosome
not only aims to substantially lower the end-to-end delay
associated with video encoding and streaming but also seeks to
minimize the inference overhead, all while enhancing the ana-
lytical accuracy crucial for precise DNN inference operations.
Figure 3 illustrates the streamlined workflow of Spliceosome,
providing a visual representation of its components and pro-
cesses.
Camera Side Execution. The execution on the camera side
is orchestrated through three interlinked components: the
Anchor Region Proposal Builder, the F1_AccGrad Scheduler,
and the Single-Channel Codec. These components collaborate
seamlessly to optimize video processing by leveraging the
available computing resources within the camera. Initially,
Spliceosome analyzes the raw captured video frames to extract
motion vectors, which serve as the foundation for the Anchor
Region Proposal Builder. This builder plays a crucial role
in pinpointing specific anchor region proposals that denote
areas of interest within frames, ensuring that subsequent
processing tasks are targeted and efficient. The F1_AccGrad
Scheduler then steps in to dynamically adjust the brightness
and contrast of these identified anchor regions, refining the
image quality to enhance visibility and analytical precision.
Lastly, the optimized video segments are encoded using the
Single-Channel Codec, which efficiently compresses the data
before transmitting it to the edge server for further DNN-based
inference. Detailed explanations of the algorithms used for
ARP identification, knobs adjustment, and video encoding are
provided in Sections IV, V, and VI, respectively.
Server Side Execution. Upon receiving the processed video
from the mobile camera, the edge server undertakes a system-
atic approach, beginning with the extraction of single-channel
frames. These frames are then fed into the pre-trained deep
neural networks, purpose-built to analyze and interpret the

incoming video data with high precision. The feedback loop
integral to Spliceosome’s operation is anchored in the infer-
ence outcomes of these DNNs. The accuracy metrics from
these results are relayed back to the F1_AccGrad Scheduler,
enabling it to make informed adjustments in future video
processing cycles. This adaptive learning mechanism ensures
that Spliceosome persistently enhances its performance, even
under the challenging conditions imposed by pixel recession.

IV. ANCHOR REGION PROPOSAL BUILDER

When a new video frame arrives, Spliceosome builds the
potential anchor region proposals (ARPs) of this frame based
on the extracted motion vectors. In this section, we present
two key designs that are critical to achieve effective ARP
prediction: a MV-based cluster to generate the initial ARPs
and a fine-tune padding method to generate the final ARPs.

A. Motion Vector Cluster

As we know, motion vectors, which indicate the pixel offset
between frames, are widely used to improve compression ratio
in existing advanced codecs. Generally, for videos captured by
a fixed camera, MVs are likely to result from moving objects,
which Spliceosome aims to detect in this paper. Commod-
ity cameras are usually equipped with specific hardware to
accelerate video encoding and calculate the motion vectors.
Typically, a longer interval between the reference frame and
the current frame may result in excessive MVs that may cover
the whole frame; hence, we regard the previous frame as the
reference frame. Assuming that the MV set of current frame
f is M(f), the goal of this module is to effectively building
the initial ARPs from M(f).

Intuitively, we can cluster them into several classes, and
each class represents a target ARP. The traditional K-Means
Clustering method achieves O(|M(f)|KT) time complexity,
where K and T are the number of classes and iteration rounds,
respectively. However, this method needs to specify the value
of K in advance. Without prior feedback information about the
amount of objects from server-side, it is challenging to make
assignment for K. In such dilemma, we consider a hierarchical
iterative algorithm to find the optimal K. We summarize three
key steps as follows:
• Step 1: For the extracted MVs M(f), it first sets a large

value to K, denoted by Kmax. Then, it runs the general
K-means clustering algorithm and returns the initial class
set M1(f), where |M1(f)| equals Kmax;

• Step 2: For ∀mi ∈ M1(f), it finds mj =
argminmE(mi, m), where m ∈ M1(f) −mi. Then, if
E(mi, mj) ≤ δ, it merges mi and mj and updates their
union central point, where E(·) indicates the euclidean
distance between two central points and δ is the given
threshold; otherwise, it does nothing for mi. Note that
the newly merged set will not participate in the secondary
merge in one iteration. We denote the output set by
M2(f).

• Step 3: For M2(f) and following sets (if exist), it repeats
the similar operations in step 2 until the distance between
any two subsets in the previous set is larger than

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Soochow University. Downloaded on March 10,2025 at 04:43:17 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NETWORKING

Fig. 4. Workflow of Anchor Region Proposal Builder.

δ. We denote the final set by Mmin(f) and regard
|Mmin(f)| as K to cluster the MVs.

Generally, the server receives live videos in chunks, and
each chunk consists of several groups of pictures (GoP) [25].
An independent GoP contains two types of frames: 1) a
key frame (I-frame) that contains complete information, and
2) P and B frames that are encoded based on the I-frame.
Considering that consecutive frames in one or several video
chunks probably contain the same number of objects, we only
run the hierarchical iterative algorithm in the first I-frame to
acquire the number of clusters K, which is then used directly
in the subsequent frames for general K-Means Clustering.

B. Anchor Region Proposal Padding

Through simple clustering of motion vectors (MVs),
we obtain initial ARPs. However, using these ARPs directly
in follow-up operations (e.g., encoding and inference) can
lead to a degradation in analytical performance, as an initial
ARP is often not large enough to cover the corresponding
target objects for three reasons. Firstly, for objects that contain
a large number of similar pixels (e.g., in Fig. 4, the left
person in region C is wearing a large black coat, and within
the coat region, the pixels are almost identical), it extracts
less useful motion vectors whose lengths are higher than the
minimum value (e.g., 2), resulting in incomplete coverage of
the target objects. Despite movement between frames, this
results in fewer pixel offsets and therefore fewer motion
vectors. Secondly, based on the law that the object is big
when near and small when far, the visual moving intensity of
objects far away from the camera is lower than that of objects
close to the camera, resulting in smaller and shorter motion
vectors for the former objects. Thirdly, when the object pixels
closely resemble the surrounding pixels (i.e., pixel recession),
the quantity of MVs is also insufficient to cover the objects.

To address this problem, we propose a padding-based
method to expand the initial ARPs. Specifically, for an initial
ARP A with shape (R,C), we define its MV-density DA as
|SA|
R×C , where SA is the MV set of ARP A, and then we design
a strategy to mitigate the effect caused by the aforementioned
two reasons. If we detect that 1) DA is lower than α, which
is probably caused by the first reason, or 2) |SA| is smaller
than the N , which results from the second reason, then we
expand ARP A by γ times, where parameters α, N , and γ
jointly control the level of expanding. It is clear that a larger
α or N leads to more ARPs to perform expanding operation,
and a bigger γ grants more confidence to completely cover the
objects. In view of managing larger ARPs inevitably causes

extra overhead in the follow-up procedures, the values of these
parameters should be well-assigned.

It’s worth noting that Spliceosome’s approach with ARP
prediction differs from prior works [13], [14], [37] in that
it does not focus solely on predicting ARP for encoding
optimization. Rather, the main goal is to reduce the overhead
of adjusting various knobs. To accomplish this, the proposal
is to replace frame-level tuning with ARP-level tuning in
Section V.

V. F1_ACCGRAD SCHEDULER

This section details the methodology of F1_AccGrad Sched-
uler, including its objective and approach.

A. Problem Definition and Objective

In general, video analytical performance is affected by
the encoding quality (i.e., bitrates), brightness and contrast
(described in section II). Assuming that we encode each ARP
with equal quality (i.e., same QP), hence we only consider
the later two factors. Given a video chunk C with F frames,
Anchor Region Proposal Builder generates K ARPs, the goal
of this module is to find the optimal brightness b and contrast
c for each ARP, that maximize the overall detection accuracy.
Thus, we express our optimization goal as the average accu-
racy of each frame in chunk C:

P : max
{bi,j ,ci,j|i≤F,j≤K}

1
F

F∑
i

K∑
j

ACC(bi,j , ci,j)

s.t, ∀i,∀j, bi,j ∈ [0, 255], ci,j ∈ [0, 400] (1)

where bi,j and ci,j indicate brightness and contrast decisions
for ARP j in frame i respectively, ACC(·, ·) represents the
achieved detection accuracy given bi,j and ci,j . Considering
the intra-frame similarity, it is improbable for the frame
contrast to be excessively high. Therefore, we have set a
maximum limit of 400 for its value.

B. Alternate Gradient Ascent Algorithm

We now focus on efficiently solving the above problem
P . A naive solution is to run all potential combinations of
{(bi,j , ci,j)} and select the optimal one. However, resource-
constrained cameras hardly support expensive DNN inference.
In addition, the large search overhead significantly affects
the real-time of video analytics. In such dilemma, we turn
to exploit the property of function ACC(·, ·). Without prior
works that reveal concrete function-form among brightness,
contrast and accuracy, we conduct a trace-driven experiment
to acquire their approximate correlations. On the basis that
tuning both brightness and contrast simultaneously compli-
cates the ACC(·, ·) profiling, we choose to fix one factor,
and investigate the relationship between another factor and
detection accuracy. Specifically, we first extract a total of
100 video frames from BridgeCam LIVE [21] and Rotary
Traffic Live [22], all of these frames have similar initial
brightness and contrast. Then, we define a tuning epoch,
in which only one knob is adjusted. Finally, we run the state-
of-the-art yolov5 [29] for each epoch.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Soochow University. Downloaded on March 10,2025 at 04:43:17 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: SPLICEOSOME: ON-CAMERA VIDEO THINNING AND TUNING FOR TIMELY AND ACCURATE ANALYTICS 7

Fig. 5. Motivation of alternative gradient ascent. (a) Detection accuracy when tuning brightness but fixing contrast; (b) Detection accuracy when tuning
contrast but fixing brightness; (3) Accuracy gradient computing.

Fig. 5a and Fig. 5b illustrate the measurement results of
multiple epochs, from which we derive two observations: 1)
ACC(b,#) (i.e., fixing contrast) is concave because accuracy
is significantly improved at first but gradually decreased if the
brightness exceeds a specific threshold, and 2) ACC(#, c)
(i.e., fixing brightness) is also concave as accuracy mono-
tonically increases with respect to increase in the contrast,
whereas the marginal improvement diminishes. The concavity
of above two functions allows us to apply alternate gradient
ascent to obtain the global optimum [26]. Suppose that the
knob decision for ARP j of frame i in chunk C is (bi,j , ci,j),
the update rule for frame i+1 (i.e., adjusting b) is represented
as

(bi+1,j , ci+1,j) =
(

α1 ·
dACC(bi,j , ci,j)

dbi,j
+ bi,j , ci,j

)
, (2)

and for frame i + 2 (i.e., adjusting c)

(bi+2,j , ci+2,j)

=
(

bi+1,j , α2 ·
dACC(bi+1,j , ci+1,j)

dci+1,j
+ ci+1,j

)
, (3)

where α1 and α2 are the step sizes for brightness and contrast
updating respectively. It is well-known that a larger step size
can lead to significant updates in the knob, resulting in either
a near-optimal value or an unfortunate miss. To address this,
we have implemented an adaptive method that automatically
adjusts the step size based on the gradient magnitude. If the
gradient is large, the step size is increased; otherwise, it is
decreased. For frames within the same chunk, we utilize an
alternate method to update the knobs until we no longer
observe appreciable accuracy improvements. If the knobs
(i.e., brightness and contrast) converge in one frame, then all
subsequent frames in this chunk use the latest knob settings.

Due to the complexity of profiling an analytical closed-form
equation for detection accuracy and its derivative, as depicted
in Fig. 5c, we rely on a numerical method to derive an approx-
imate gradient using live measurement values. To acquire the
partial derivative of ACC(bi+2,j , c), an intuitive method is to
use the slop of two recent accuracies (i.e., ACC(bi,j , ci−1,j)
and ACC(bi,j , ci−1,j)) to approximate it.

Offline Analyzer. Unfortunately, the resource-constrained
camera is not capable of directly computing the accuracy slop,
and server-driven approach is also hindered by the lack of full
ground-truth references. In such dilemma, we propose a server-
side Offline Analyzer. Specifically, for these recent frames
from the same camera, the edge server leverages the idle
compute-resources to run DNNs inference on them under each
potential knobs (i.e., brightness and contrast) assignments.

Then, it regards the output that has the maximum bounding
boxes and maximum average confidence as the ground truth,
based on which it is able to calculate the accuracy under
each knob setting. Finally, the server encapsulates it into a
configuration file and returns it to the camera to guide the
knob adjustment. Once camera receives this file, it updates
the local configuration file.

Therefore, to obtain the partial derivative of
ACC(bi+2,j , c), the camera derives two accuracies under
knobs (bi,j , ci−1,j) and (bi,j , ci−1,j) respectively from the
latest configuration file, and uses their slop as the derivative.
Similarly, we regard the slop between accuracies under knobs
(bi−1,j , ci,j) and (bi−1,j , ci−2,j) as the partial derivative of
ACC(b, ci+2,j). Both operations of configuration file lookup
and accuracy slop computing are lightweight, incurring
negligible overhead.

VI. SINGLE-CHANNEL CODEC

In this section, we introduce Single-Channel Encoding that
is able to significantly reduce the encoding difficulty, data
volume and accelerate the final DNN inference while not
decreasing the analytical performance.

Modern video codecs (e.g., VP9, AV1 and HEVC), which
runs multiple processes such as DCT transform to encode
the three-channel videos, faces two critical challenges. Firstly,
it involves multiple format conversions, incurring extra over-
head. For example in H.265, it needs to convert the video
format from RGB to YCrBr in advance., and transmits the
videos with bitstream form. Secondly, despite efficient mecha-
nisms (e.g., inter-prediction, and quantification) that use video
redundancy to reduce volume, it is still challenging when
facing terrible network connection. What’s more, as described
before, compared with three-channel input, single-channel
input significantly lowers the DNN inference overhead (e.g.,
inference time and runtime GPU memory usage) in multiple
layers such as convolution and pooling. Hence in this module,
we make several optimizations based on the open source x265
HEVC Encoder [27] below.
Efficient Format Transformation. For the input video frame
with three channels (i.e., RGB), we first transform it into
YCbCr format, where Y is computed based on the ITU-R
Recommendation BT.601 [28], and Cb and Cr are automati-
cally set to 0. In this way, we only need to compute Y but
care less about other information (i.e., Cb and Cr), which
largely improves the format transforming efficiency. Then,
in the decoding stage that regenerates RGB frame, based on
BT.601 [28], any channel information of RGB is equal to Y.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Soochow University. Downloaded on March 10,2025 at 04:43:17 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NETWORKING

Hence we only extract one channel information for DNN input,
which accelerates the final inference procedure.
Lightweight Single-Channel Sampling. It makes critical
sense to assign less resolution for chroma information than
for luma information for video encoding, taking advantage of
the experimental result in Section VIII that CNN expresses
acceptable performance despite only offering luma informa-
tion. Hence, the subsampling scheme, commonly expressed
as a three-part ratio, is set to 4:0:0 in this paper. By this
way, we achieve single-channel encoding by only maintaining
luma information (i.e., Y), which further reduces the amount
of transmitted video volume.
ARP-oriented Quantization Parameter (QP) adaptation. To
some extent, the Quantization Parameter (QP) reflects the level
of compression of spatial details. A smaller QP value means
that most of the details will be retained, which in turn requires
a higher bitrate for encoding. On the other hand, increasing
the QP value might lead to missing some details, thereby
requiring less bitrate but worsening the frame distortion. When
combining Anchor Region Proposal (ARP) and QP, a common
approach is to apply a low QP value (e.g., 10) to encode each
ARP, while assigning a high QP value (e.g., 40) to encode
the areas outside these ARPs. However, the network condition
plays a critical role in determining the appropriate QP value.
When the bandwidth is sufficient, it is strongly recommended
to use a much low QP value for encoding. However, in the case
of poor network conditions, this may not be feasible. In such
a situation, we prioritize assigning a low QP value to ARPs to
ensure the final detection accuracy, while setting the QP value
in other regions to the lowest possible value that matches the
remaining bandwidth.

VII. SYSTEM IMPLEMENTATION

We implement a prototype of Spliceosome in Python and
C++ for easy integration with video analytics applications.
Hardware Setup. We deploy Spliceosome’s edge server on
a Dell PowerEdge R740 server, a reliable and flexible server
solution designed for modern data processing requirements.
This server configuration is enhanced with a NVIDIA GeForce
RTX2080 Ti GPU, which provides substantial computational
power essential for video analytics tasks. Operating on the
Ubuntu 20.04 system, well-known for its stability and wide
range of supported applications, our setup ensures compatibil-
ity with diverse software environments.

For capturing video inputs, we employ a mobile develop-
ment board, the Nvidia Jetson TX2, acting as the camera.
This board is equipped with a Dual-Core NVIDIA Denver 2
64-Bit CPU and a Quad-Core ARM Cortex-A57 MPCore
CPU, complemented by an integrated NVIDIA Pascal GPU
with 256 CUDA cores. This potent combination allows the
board to handle several light-weight computations efficiently.
However, despite its capabilities, the Jetson TX2 does not
inherently support real-time deep neural network (DNN)
inference for video analytics, necessitating reliance on edge
computing resources to ensure quick, responsive video data
processing.
Software Implementation. On the server side, Spliceosome
is built upon the Pytorch 1.9.0 framework, a highly
flexible and efficient open-source machine learning library.

By integrating the NVIDIA TensorRT SDK, we capi-
talize on advanced optimization techniques that expedite
DNN inference, essential for real-time analytics during
both online detection and offline profiling processes. These
techniques ensure that computational resources are utilized
efficiently, minimizing latency and improving throughput.
The server efficiently communicates profiling results back to
the camera, employing the TCP KeepAlive heartbeat
detection mechanism to maintain a persistent connec-
tion, which enhances reliability and reduces transmission
delays.

On the camera side, Spliceosome uses a unique approach
to extract motion vectors, essential for detailed video analysis.
This task is accomplished using the extract_mvs.c exe-
cutable file, a utility provided by the versatile media processing
library, ffmpeg. The extracted motion vectors, represented
as AVMotionVector, offer critical insights into frame-by-
frame motion patterns, which are pivotal in executing precise
video analytics. By leveraging these vectors, Spliceosome
can efficiently assess and process video data, augmenting
the overall effectiveness of our system. Corresponding to the
three key components of Spliceosome, the camera needs to
implement three abstract functions:
1. def ARP_build

(mvs: List[vector])->List[ARPs]
2. def Accuracy_opt

(ARP: List[int])->Tuple[int]
3. def Encode

(img: numpy.array)->Bitstream
Spliceosome employs the first API to build the anchor

region proposal, func ARP_build consists of clustering
and padding operations. Then, based on the generated ARPs,
the second API is to perform knobs optimization on each ARP.
After that, the final API is designed to improve the format
conversion (func X265EncodeYUV), chroma subsampling,
and QP adaptation (func AdaptiveQP) based on the open
source x265 HEVC Encoder.

VIII. EVALUATION

In this section, we evaluate the performance of Spliceosome
in terms of end-to-end delay, detection accuracy and inference
efficiency. The results demonstrate that our system is able to
achieve both low end-to-end delay and high inference accuracy
requirement of video analytics applications under diverse
network status and Pixel Recession. Specifically, compared
to other alternative designs, Spliceosome improves accuracy
by 4.71-14.47%, reduces the average response time by 40.94-
58.71%, and speeds up inference by 14.28%.

A. Experiment Setup

CNN Model and Datasets. We focus on object detec-
tion application in this paper, and utilize the state-of-the-art
yolov5 [29] model. To gather datasets for both real-time video
analytics and offline profiling, we select two types of live
camera videos from YouTube [23]: BridgeCam LIVE [21]
and Rotary Traffic Live [22]. For each category, we record
20 minutes of continuous video every hour (e.g. from 5:00-
6:00 pm), resulting in a total length of 480 minutes. Half

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Soochow University. Downloaded on March 10,2025 at 04:43:17 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: SPLICEOSOME: ON-CAMERA VIDEO THINNING AND TUNING FOR TIMELY AND ACCURATE ANALYTICS 9

Fig. 6. The total delay vs. inference accuracy of Spliceosome and several baselines on two video datasets (i.e., BridgeCam Live video and Rotary Traffic
video) under the condition with or without PR (i.e., pixel recession).

of the recorded videos are used for the online stage and the
other half are used for offline profiling. It’s worth noting that
BridgeCam Live video features fewer objects, whereas Rotary
Traffic video presents a larger number of objects, some of
which are small in size.
Networks. In general, accurately estimating real-time avail-
able bandwidth is challenging despite many efforts to do
so [30], [31], [32]. Therefore, to emulate real network con-
ditions, we created a corpus of network traces by combining
several public datasets and a network emulation tool: a broad-
band dataset provided by the FCC [33] and the Mahimahi
tool [34]. The FCC dataset contains over 1 million throughput
traces, each of which records the average value over 2,100
seconds with a granularity of 5 seconds. We selected 200 traces
(each with a duration of 500 seconds) from the Web brows-
ing category in the February 2016 collection to add to our
corpus. The Mahimahi tool generates traces that capture the
time-varying throughput of the U.S. cellular network as expe-
rienced by mobile users. Similarly, we added 200 Mahimahi
traces to our corpus. In total, we collected 400 traces for
evaluation. Instead of randomly picking the traces, we sampled
them based on the throughput distribution over the entire
timescale, excluding traces with an average bandwidth exceed-
ing 10 Mbps to emulate a bandwidth-constrained environment.
Baselines. We use baselines from three categories: 1) Server-
driven method DDS [13], which first sends low-quality video
to server, and re-sends the high-quality region of interest
based on the feedback, while Spliceosome does not require
server feedback and multiple transmissions; 2) Frame filtering
method Reducto [11], which uses local resources to filter out
the redundant frames, while Spliceosome does not filter out
several frames and thus does not degrade the analytics accu-
racy; and 3) Configuration adaptation method AWStream [40],
which balances accuracy and processing delay, while Spliceo-
some also adjusts the brightness and contrast.
Parameters Selection. 1) In module Anchor Region Proposal
Builder, we set the initial Kmax and distance threshold δ to
40 and 0.15 respectively for hierarchical iterative algorithm,
and set α, N and γ to 0.15, 20, and 0.2 respectively to
jointly control the padding level; 2) In module F1_AccGrad
Scheduler, we use a high α1 and α2 (i.e., 0.5) when achieving
a high gradient, otherwise applying a low value (i.e., 0.1); and
3) In Single-Channel Codec, we set the QP for ARP to 15,
and assign a higher QP for other regions based on the left
bandwidth.

B. Improvement of Overall Performance
Fig. 6 illustrates the achieved accuracy and resulting

response delay of Spliceosome and other baselines on these
two video datasets, with each ellipse representing 80% of
the results. We divide each video type into two subsets, one
recorded between 6:00am and 18:00pm and the other between
18:00pm and 6:00am, corresponding to cases with and without
pixel recession (PR), respectively. For the BridgeCam Live
video without PR in Figure 6a, all alternative designs achieve
high accuracy (0.97, 0.96, 0.95, and 0.92 for Spliceosome,
DDS, Reducto, and AWStream, respectively) while exhibit-
ing varying delays (60.8ms, 108.1ms, 92.1ms, and 83.1ms,
respectively). DDS improves accuracy through server-driven
feedback but incurs additional time, while Reducto filters out
redundant frames, reducing transmission volume. On the other
hand, AWStream selects the frame encoding configuration
purely based on delay and accuracy to achieve a compromise
between the two.

For BridgeCam Live video with PR in Fig. 6b, due
to the similarity of objects pixel and surrounding pixel,
DDS, Reducto and AWStream present a significant accuracy
drop (11%, 15% and 10% respectively). The PR condition
causes AWStream to filter out excessive frames, resulting
in a decrease in accuracy. Compared to DDS, Reducto and
AWStream, Spliceosome achieves 4.71%, 11.25% and 8.54%
higher accuracy gains, and 60%, 11.14% and 34.43% delay
reduction, respectively. We then verify their performance in
Rotary Traffic video, it is clear that in Fig. 6c, they acquire
lower accuracy and higher delay (e.g., 92.8, 136.1, 135.1 and
96.1 ms for Spliceosome, DDS, Redcuto and AWStream
respectively) compared those in BridgeCam Live video, as this
testing videos contain more and small objects. It is aggra-
vated by PR condition in Fig. 6d. Nonetheless, Spliceosome
improves the accuracy by 7.4%, 14.47% and 6.12% compared
to DDS, Reducto and AWStream respectively.
Delay Distribution. Fig. 7 shows the distribution of each com-
ponents, including camera side overhead (i.e., local heuristic
and encoding), video transmission and server side inference.
Note that Strawman directly transfers high-quality video to
remote server. Case for BridgeCam Live video in Fig. 7a,
Spliceosome accelerates the inference by 14.28% (from 9.1ms
to 7.8ms), and outperforms DDS, Reducto and AWStream
by 61.04%, 42.31% and 50.82% in terms of streaming
delay respectively, which is largely due to the single-channel
encoding mechanism. Though ran in Rotary Traffic video,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Soochow University. Downloaded on March 10,2025 at 04:43:17 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NETWORKING

Fig. 7. The distribution of resulting delay for Spliceosome and several
baselines in two testing videos.

Fig. 8. Accuracies of Spliceosome and several baselines under diverse
bandwidths with or without PR.

Spliceosome is still able to improves the streaming delay
by 51.09%, 44.4% and 26.22% respectively. Since Spliceo-
some leverages the camera side resource to build ARP and
run F1_AccGrad Scheduler, it causes extra slightly higher
overhead but leaves negligible effects to the overall per-
formance. Above all, Spliceosome reduces the end-to-end
delay by 46.45% and 36.14% compared to DDS, Reducto
and AWStream respectively in BridgeCam Live video, and
achieves 33.07% and 32.54% in Rotary Traffic video.
Accuracy under Diverse Bandwidths. Figure 8 illustrates
the correlation between detection accuracy and available band-
width in BridgeCam Live video. In Figure 8a, even with
insufficient bandwidth (e.g., 0.5 Mbps), Spliceosome still
achieves good results (e.g., 0.72 accuracy) because it uses
single-channel information for encoding and assigns more
bitrate for the selected ARPs. However, other baselines heavily
rely on bandwidth and achieve lower accuracy, less than 0.6.
The situation is worse when the video is in PR, as Figure 8b
shows. DDS, Reducto, and AWStream only achieve around
0.4 accuracy, while Spliceosome achieves 0.6. Moreover, even
given enough bandwidth (e.g., 6 Mbps), other designs fail to
achieve the 0.95 accuracy achieved by Spliceosome.

C. Sensitivity to Parameter Settings

We explore the impacts of five parameters on Spliceosome.
Without loss of generality, we fix other parameters when
tuning a parameter. For parameters δ, (α,N) and γ, we mea-
sure the resulting ratio of the sum of each ARP area to the
whole-frame area and achieved accuracy; For QP , we evaluate
the accuracy and normalized data volume compared to the
performance using the smallest QP.
Impact of δ: We tune the assignment of δ from the candidate
set {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} and depict the results in
Fig. 9a. The accuracy increases with respect to the increase
of δ, whereas the marginal improvement diminishes when δ
exceeds 0.15. However, the ratio shows exponential growth
when δ is set from 0.15 to 0.3. The result in Fig. 9b reveal
that a larger δ leads to a larger ARP that needs more bitrate
to encode it, thus inevitably increasing the data volume.

Impact of α, N and γ: They are jointly to control the
ARP padding level. As Fig. 9c shows, setting α and N to
0.05 and 5 respectively significant lowers the ratio (about
0.12), but obtains only 0.55 accuracy. Selecting a higher α
and N (e.g., 0.2 and 40) does improve the detection accuracy
(0.95), but the considerable data volume resulting from huge
ARPs remarkably aggravates the network bottleneck. Simi-
larly, a small γ 0.05 can hardly enhance the accuracy but
greatly lowers the ratio of ARPs (about 0.15); a bigger γ
0.4 leads to large ratio about 0.95 and high accuracy 0.98.
Above all, we should well balance the ratio of ARPs area to
the whole frame and detection accuracy by making adaptive
assignments.
Impact of QP : We evaluate the effect of QP selection from
candidate set {5, 10, 15, 20} on the data volume and accuracy.
As shown in Fig. 9d, it achieves 0.90 and 0.95 in accuracy and
data volume respectively when setting QP to 5, whereas they
are 0.1 and 0.78 respectively when QP is 20. It indicates that
QP assignment severely affects Spliceosome performance in
terms of detection accuracy and data volume, thus is proposed
to be carefully tuned.

D. Pipeline Execution

Since camera-side operations, video streaming and
server-side inference consume different resources (i.e.,
camera resources, available bandwidth and server GPUs or
FPGAs resources respectively) that do not affect each other,
hence to make full use the resources, existing general systems
such as DDS and AWStream for video analytics enable these
three components to be efficiently pipelined and executed
in parallel. Fig. 10 compares the performances of different
pipeline system, where the pipeline length is set to 10.

Figure 10a shows that DDS spends the majority of its
time (around 71.23%) on video transmission, which is largely
due to the secondary transmission based on server feed-
back. On average, it takes 80.11 ms to process each frame.
In contrast, Reducto in Figure 10b makes full use of local
resources to filter out a large amount of redundant frames and
shortens the time spent on camera-side execution and video
streaming (i.e., 31 ms and 52 ms). As a result, it achieves an
effective pipeline with an average response time of 56.01 ms.
AWStream in Figure 10c makes configuration decisions on the
server-side, incurring little camera-side overhead (about 13 ms
for video encoding). Hence, on average, it takes 63.21 ms to
process each frame. Our proposed Spliceosome in Figure 10d
utilizes camera-side resources to find potential ARP and uses a
single-channel codec to reduce the data volume. This approach
achieves an average response time of 33.08 ms. It is evident
that both Reducto and Spliceosome obtain effective pipeline
execution, as they control the processing time of each step
(e.g., camera processing and video streaming) to be consistent.
Overall, when arranging each stage to be pipelined and exe-
cuted in parallel, Spliceosome improves the average response
delay by 58.71%, 40.94%, and 47.67% compared to DDS,
Reducto, and AWStream, respectively.

IX. DISCUSSION AND FUTURE WORK

We notice that the performance of Spliceosome largely
relies on the accuracy of ARP generation. Precise ARP predic-

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Soochow University. Downloaded on March 10,2025 at 04:43:17 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: SPLICEOSOME: ON-CAMERA VIDEO THINNING AND TUNING FOR TIMELY AND ACCURATE ANALYTICS 11

Fig. 9. The data volume vs. inference accuracy of Spliceosome under diverse parameter assignments.

Fig. 10. Pipeline execution of Spliceosome and several baselines. “Cam.”, “Str.”, and “Inf.” indicate the procedures of camera-side execution, video streaming
and server-side inference, respectively.

tion, which benefits not only the knobs tuning to improve the
analytical accuracy, but also the video encoding to reduce the
video volume, is hindered by the video content. For instance,
no MVs are extracted under the extremely severe pixel reces-
sion (e.g., with almost 0 contrast); whereas excessive MVs
are generated for video with more objects and frequent scene
changes, and more ARPs incurs larger camera-side overhead.

Hence several designs of Spliceosome warrant further inves-
tigation. First, it probably works by enhancing the contrast
of referenced frame in MV extracting. Second, reducing the
number of updates by setting adaptive step sizes is able to
accelerate the knobs tuning. Thirdly, designing a new module
to detect the stationary objects is necessary. Lastly, more types
of videos are needed to verify the system scalability.

X. RELATED WORK

In this section, we discuss the most closely related work.
Video Analytics System. The growing demand for video ana-
lytics has led to numerous research efforts focused on different
areas such as camera-edge-cloud collaboration [18], [35], [36],
[37], [38], [39], [40], [41], [42], [57], DNN sharing [44],
[45], [46], [47], and finding the optimal balance between
accuracy and cost [17], [43], [48], [49], [50], [51], [52],
[53]. For instance, ELF [17] partitions frames and offloads
the slices to multiple edge servers for parallel inference;
Neurosurgeon [45], DeepThings [46], and Cracking Open the
DNN [47] propose to partition the DNN and distribute the
layer slices across edge servers to reduce inference delay;
Chameleon [52] VideoStorm [49] and AWStream [40] use
adaptive configuration to balance accuracy and overall delay.
However, they fall insufficient to solve the issue of pixel
recession.
Camera-Side Efforts for Video Analytics. FilterForward [12]
and Reducto [11] perform on-camera sampling based on video
features and filtering thresholds, respectively, significantly
reducing transmission volume. Research [54], [55], [56], [57]
aims to partition models and schedule them to multiple mobile
devices for collaborative inference. AWS Wavelength [58]
migrates Amazon Web Services to Verizon’s 5G edge comput-
ing platform. NVIDIA and Intel enable real-time AI inference

at the edge by providing NVIDIA EGX A100 [60] and Intel
Xeon Scalable Processor with Intel Deep Learning Boost [59].
However, these methods require powerful on-device compute-
resource to run the expensive heuristics.
Anchor Region Proposal Prediction. To reduce transmis-
sion volume or inference computation, numerous research
works [13], [17], [37], [61] propose emphasizing regions of
interest while weakening other regions. For instance, DDS [13]
first sends a low-quality frame to the server and then resends
high-quality regions based on feedback from the server.
ELF [17] designs an attention-based LSTM network to crop
the regions of interest; however, this operation is largely
constrained by local compute resources. Supremo [61] predicts
regions of interest within a frame based on the quantity of
detected edges and uses neural super-resolution techniques
to improve human-perceived visual quality. However, it often
mistakes regions in the background as target objects. In con-
trast, Spliceosome leverages the motion vector among frames
to achieve efficient and accurate ARP prediction.

XI. CONCLUSION

In this paper, we propose Spliceosome, a new video ana-
lytics framework that effectively reduces overall delay and
enhances detection accuracy in the face of pixel recession.
Spliceosome avoids relying on either local neural inference
or server-driven feedback and instead employs intermediate
motion vectors to generate targeted ARPs. To overcome the
decrease in accuracy caused by pixel recession, we propose
an accuracy optimizer that automatically adjusts the frame
settings for brightness and contrast. In addition, Spliceosome
uses the x265 HEVC Encoder to encode frames with one-
channel information, which significantly reduces data volume
and accelerates DNN inference. We implemented Spliceosome
using commercial off-the-shelf hardware, and our experiments
demonstrate that it enhances detection accuracy by 4.71-
14.47%, reduces average response time by 40.94-58.71%, and
speeds up inference by 14.28%.

REFERENCES

[1] (2021). Trafficvision: Traffic Intelligence From Video. [Online]. Avail-
able: http://www.trafficvision.com/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Soochow University. Downloaded on March 10,2025 at 04:43:17 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NETWORKING

[2] VisionZero Official Website. The Vision Zero Initiative. Accessed:
May 2, 2024. [Online]. Available: http://www.visionzeroinitiative.com/

[3] TrafficTechnologyToday. AI Traffic Video Analytics Platform
Being Developed. Accessed: May 2, 2024. [Online]. Available:
https://www.traffictechnologytoday

[4] GoodVision. (2021). GoodVision: Smart Traffic Data Analytics.
[Online]. Available: https://goodvisionlive.com/

[5] intuVision. (2021). Intuvision Va Traffic Use Case. Accessed:
May 2, 2024. [Online]. Available: https://www.intuvisiontech.
com/intuvisionVA_solutions/intuvisionVA_traffic

[6] Microsoft. (2019). Traffic Video Analytics Case Study Report. [Online].
Available: https://www.microsoft.com/en-us/research/publication/traffic-
video-analytics-case-study-report/

[7] SecurityInfoWatch. (2012). Market for Small IP Camera
Installations Expected To Surge. [Online]. Available: http://www.
securityinfowatch.com/article/10731727/

[8] SecurityInfoWatch. (2016). Data Generated By New Surveillance Cam-
eras To Increase Exponentially in the Coming Years. [Online]. Available:
http://www.securityinfowatch.com/news/12160483/

[9] Slate. (2019). Humans Cant Watch All the Surveillance Cameras
Out There, So Computers Are. [Online]. Available: https://slate.
com/technology/2019/06/video-surveillance-analytics-software-
artificial-html

[10] GrandViewResearch. (2018). Video Analytics Market Size Worth $9.4
Billion By 2025 Cagr: 22.8%. [Online]. Available: https://www.
grandviewresearch.com/press-release/global-video-analytics-market

[11] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Netravali,
“Reducto: On-camera filtering for resource-efficient real-time video
analytics,” in Proc. Annu. Conf. ACM Special Interest Group Data
Commun. Appl., Technol., Architectures, Protocols Comput. Commun.,
Jul. 2020, pp. 359–376.

[12] C. Canel et al., “Scaling video analytics on constrained edge nodes,” in
Proc. Mach. Learn. Syst., 2019, pp. 406–417.

[13] K. Du et al., “Server-driven video streaming for deep learning inference,”
in Proc. Annu. Conf. ACM Special Interest Group Data Commun.
Appl., Technol., Architectures, Protocols Comput. Commun., Jul. 2020,
pp. 557–570.

[14] K. Du, Q. Zhang, A. Arapin, H. Wang, Z. Xia, and J. Jiang, “AccMPEG:
Optimizing video encoding for accurate video analytics,” in Proc. Mach.
Learn. Syst., 2022, pp. 450–466.

[15] J. Kim, Y. Jung, H. Yeo, J. Ye, and D. Han, “Neural-enhanced live
streaming: Improving live video ingest via online learning,” in Proc.
Annu. Conf. ACM Special Interest Group Data Commun. Appl., Technol.,
Architectures, Protocols Comput. Commun., Jul. 2020, pp. 107–125.

[16] A. Horé and D. Ziou, “Image quality metrics: PSNR vs. SSIM,” in Proc.
20th Int. Conf. Pattern Recognit., Aug. 2010, pp. 2366–2369.

[17] W. Zhang et al., “Elf: Accelerate high-resolution mobile deep vision
with content-aware parallel offloading,” in Proc. 27th Annu. Int. Conf.
Mobile Comput. Netw., Sep. 2021, pp. 201–214.

[18] Y. Wang, W. Wang, J. Zhang, J. Jiang, and K. Chen, “Bridging the
edge-cloud barrier for real-time advanced vision analytics,” in Proc. 11th
Workshop Hot Topics Cloud Comput., 2019, pp. 1–7.

[19] H. Zhang, D. Liu, and Z. Xiong, “Two-stream action recognition-
oriented video super-resolution,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2019, pp. 8798–8807.

[20] Y. Wang, W. Wang, D. Liu, X. Jin, J. Jiang, and K. Chen, “Enabling
edge-cloud video analytics for robotics applications,” IEEE Trans. Cloud
Comput., vol. 11, no. 2, pp. 1500–1513, Apr. 2023.

[21] BridgeCam LIVE. Accessed: Feb. 10, 2024. [Online]. Available:
https://www.youtube.com/watch?v=rr-Ehp4lhmg

[22] Sharx Security Demo Live Cam: Rotary Traffic Circle Derry
NH USA. Accessed: Feb. 10, 2024. [Online]. Available:
https://www.youtube.com/watch?v=fuuBpBQElv4

[23] YouTube Live Streaming. Accessed: Feb. 10, 2024. [Online]. Available:
https://www.youtube.com/live

[24] X. Dai, X. Kong, T. Guo, and Y. Huang, “CiNet: Redesigning deep
neural networks for efficient mobile-cloud collaborative inference,” in
Proc. SIAM Int. Conf. Data Mining, 2021, pp. 459–467.

[25] J. R. Ding and J. F. Yang, “Adaptive group-of-pictures and scene change
detection methods based on existing H. 264 advanced video coding
information,” J. IET Image Process., vol. 2, no. 2, pp. 85–94 2008.

[26] S. Shalev-Shwartz, “Online learning and online convex optimization,”
Found. Trends Mach. Learn., vol. 4, no. 2, pp. 107–194, 2011.

[27] X265 HEVC Encoder. Accessed: Mar. 22, 2024. [Online]. Available:
https://bitbucket.org/multicoreware/x265_git.git

[28] ITU-R Recommendation BT.601. Accessed: Mar. 22, 2024. [Online].
Available: https://en.wikipedia.org/wiki/Rec._601

[29] YOLOv5. Accessed: Mar. 22, 2024. [Online]. Available:
https://github.com/ultralytics/yolov5

[30] S. S. Chaudhari and R. C. Biradar, “Survey of bandwidth estima-
tion techniques in communication networks,” Wireless Pers. Commun.,
vol. 83, no. 2, pp. 1425–1476, Jul. 2015.

[31] J. Fang et al., “Reinforcement learning for bandwidth estima-
tion and congestion control in real-time communications,” 2019,
arXiv:1912.02222.

[32] M. Lin, X. Zhang, Y. Tian, and Y. Huang, “Multi-signal detection
framework: A deep learning based carrier frequency and bandwidth
estimation,” Sensors, vol. 22, no. 10, p. 3909, May 2022.

[33] FCC Broadband Bandwidth Measurement. Accessed: Mar. 22, 2024.
[Online]. Available: https://www.fcc.gov/reports-research/reports/
measuring-broadband-america/raw-data-measuring-broadband-america-
eighth

[34] R. Netravali et al., “Mahimahi: Accurate record-and-replay for HTTP,”
in Proc. USENIX Annu. Tech. Conf. (USENIX), 2015, pp. 417–429.

[35] T. Y. H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,”
in Proc. 13th ACM Conf. Embedded Networked Sensor Syst., 2015,
pp. 155–168.

[36] S. P. Chinchali, E. Cidon, E. Pergament, T. Chu, and S. Katti, “Neural
networks meet physical networks: Distributed inference between edge
devices and the cloud,” in Proc. 17th ACM Workshop Hot Topics Netw.,
Nov. 2018, pp. 50–56.

[37] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection
for mobile augmented reality,” in Proc. 25th Annu. Int. Conf. Mobile
Comput. Netw., Aug. 2019, p. 116.

[38] C. Pakha, A. Chowdhery, and J. Jiang, “Reinventing video streaming
for distributed vision analytics,” in Proc. 10th USENIX Workshop Hot
Topics Cloud Comput., 2018, pp. 1–7.

[39] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in Proc. IEEE
37th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2017, pp. 328–339.

[40] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“AWStream: Adaptive wide-area streaming analytics,” in Proc. Conf.
ACM Special Interest Group Data Commun., Aug. 2018, pp. 236–252.

[41] T. Zhang, A. Chowdhery, P. Bahl, K. Jamieson, and S. Banerjee,
“The design and implementation of a wireless video surveillance sys-
tem,” in Proc. 21st Annu. Int. Conf. Mobile Comput. Netw., Sep. 2015,
pp. 426–438.

[42] K.-J. Hsu, K. Bhardwaj, and A. Gavrilovska, “COUPER: DNN model
slicing for visual analytics containers at the edge,” in Proc. IEEE/ACM
Symp. Edge Compt. (SEC), Nov. 2019, pp. 179–194.

[43] C.-C. Hung et al., “VideoEdge: Processing camera streams using hier-
archical clusters,” in Proc. IEEE/ACM Symp. Edge Comput. (SEC),
Oct. 2018, pp. 115–131.

[44] A. H. Jiang et al., “Mainstream: Dynamic stem-sharing for multi-tenant
video processing,” in Proc. USENIX Annu. Tech. Conf., 2018, pp. 29–42.

[45] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” in Proc. 22nd Int. Conf. Architectural Support
Programming Languages Operating Syst., 2017, pp. 615–629.

[46] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
adaptive deep learning inference on resource-constrained IoT edge
clusters,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 37, no. 11, pp. 2348–2359, Nov. 2018.

[47] J. Emmons, S. Fouladi, G. Ananthanarayanan, S. Venkataraman,
S. Savarese, and K. Winstein, “Cracking open the DNN black-box:
Video analytics with DNNs across the camera-cloud boundary,” in
Proc. Workshop Hot Topics Video Analytics Intell. Edges, Oct. 2019,
pp. 27–32.

[48] R. LiKamWa and L. Zhong, “Starfish: Efficient concurrency support for
computer vision applications,” in Proc. 13th Annu. Int. Conf. Mobile
Syst., Appl., Services, 2015, pp. 213–226.

[49] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live video analytics at scale with approximation and
delay-tolerance,” in Proc. 14th USENIX Symp. Networked Syst. Design
Implement, 2017, pp. 377–392.

[50] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu, “DeepCache: Principled
cache for mobile deep vision,” in Proc. 24th Annu. Int. Conf. Mobile
Comput. Netw., Oct. 2018, pp. 129–144.

[51] Y. Guan, C. Zheng, X. Zhang, Z. Guo, and J. Jiang, “Pano: Optimizing
360◦ video streaming with a better understanding of quality perception,”
in Proc. ACM Special Interest Group Data Commun., Aug. 2019,
pp. 394–407.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Soochow University. Downloaded on March 10,2025 at 04:43:17 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: SPLICEOSOME: ON-CAMERA VIDEO THINNING AND TUNING FOR TIMELY AND ACCURATE ANALYTICS 13

[52] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: Scalable adaptation of video analytics,” in Proc. Conf.
ACM Special Interest Group Data Commun., Aug. 2018, pp. 253–266.

[53] N. Chen et al., “Cuttlefish: Neural configuration adaptation for video
analysis in live augmented reality,” IEEE Trans. Parallel Distrib. Syst.,
vol. 32, no. 4, pp. 830–841, Apr. 2021.

[54] W. He, S. Guo, S. Guo, X. Qiu, and F. Qi, “Joint DNN partition
deployment and resource allocation for delay-sensitive deep learning
inference in IoT,” IEEE Internet Things J., vol. 7, no. 10, pp. 9241–9254,
Oct. 2020.

[55] S. Zhang, S. Zhang, Z. Qian, J. Wu, Y. Jin, and S. Lu, “DeepSlicing:
Collaborative and adaptive CNN inference with low latency,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 9, pp. 2175–2187, Sep. 2021.

[56] J. Mao et al., “MeDNN: A distributed mobile system with enhanced
partition and deployment for large-scale DNNs,” in Proc. IEEE/ACM
Int. Conf. Computer-Aided Design (ICCAD), Nov. 2017, pp. 751–756.

[57] D. Hu and B. Krishnamachari, “Fast and accurate streaming CNN infer-
ence via communication compression on the edge,” in Proc. IEEE/ACM
5th Int. Conf. Internet-Things Design Implement. (IoTDI), Apr. 2020,
pp. 157–163.

[58] AWS Wavelength: Bring AWS Services To the Edge of the Ver-
izon 5G Network. Accessed: Apr. 15, 2024. [Online]. Available:
https://enterprise.verizon.com/business/learn/edge-computing/

[59] Intel Xeon Scalable Processors. Accessed: Apr. 15, 2024. [Online].
Available: https://www.intel.com/content/www/us/en/products/
processors/xeon/scalable.html

[60] Nvidia Egx A100: Delivering Real-Time AI Processing and Enhanced
Security At the Edge. Accessed: Apr. 15, 2024. [Online]. Available:
https://www.nvidia.com/en-us/data-center/products/egx-a100/

[61] J. Yi, S. Kim, J. Kim, and S. Choi, “Supremo: Cloud-assisted
low-latency super-resolution in mobile devices,” IEEE Trans. Mobile
Comput., vol. 21, no. 5, pp. 1847–1860, May 2022.

Ning Chen received the Ph.D. degree from Nanjing
University. He is currently a Lecturer with the
School of Computer Science and Technology,
Soochow University. He has published over 20
papers, including those appeared in INFOCOM,
ICDE, IEEE/ACM TRANSACTIONS ON NET-
WORKING, IEEE TRANSACTIONS ON PARALLEL
AND DISTRIBUTED SYSTEMS, SECON, Computer
Networks, and ICPADS. His research interests
include edge computing, deep reinforcement learn-
ing, and video streaming.

Sheng Zhang (Senior Member, IEEE) received the
B.S. and Ph.D. degrees from Nanjing University
in 2008 and 2014, respectively. He is currently an
Associate Professor with the Department of Com-
puter Science and Technology, Nanjing University.
He is also a member with the State Key Lab-
oratory for Novel Software Technology. He has
published more than 80 articles, including those
appeared in IEEE JOURNAL ON SELECTED AREAS
IN COMMUNICATIONS, IEEE TRANSACTIONS ON
MOBILE COMPUTING, IEEE/ACM TRANSAC-

TIONS ON NETWORKING, IEEE TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON COMPUTERS, Mobi-
Hoc, ICDCS, and INFOCOM. His research interests include cloud computing
and edge computing. He received the Best Paper Award of IEEE ICCCN
2020 and the Best Paper Runner-Up Award of IEEE MASS 2012. He was a
recipient of the 2020 ACM Nanjing Rising Star Award and the 2015 ACM
China Doctoral Dissertation Nomination Award. He is a Senior Member of
CCF and a member of ACM.

Jie Wu (Fellow, IEEE) is currently the Director of
the Center for Networked Computing and a Laura
H. Carnell Professor with Temple University. He is
also the Director of International Affairs with the
College of Science and Technology. He was the
Chair of the Department of Computer and Infor-
mation Sciences from the summer of 2009 to the
summer of 2016 and the Associate Vice Provost of
the International Affairs from the fall of 2015 to the
summer of 2017. Prior to joining Temple University,
he was the Program Director of the National Science

Foundation and was a Distinguished Professor with Florida Atlantic Univer-
sity. He regularly publishes in scholarly journals, conference proceedings, and
books. His current research interests include mobile computing and wireless
networks, routing protocols, cloud and green computing, network trust and
security, and social network applications. He was a recipient of the 2011 China
Computer Federation (CCF) Overseas Outstanding Achievement Award.
He serves on several editorial boards, including IEEE TRANSACTIONS ON
MOBILE COMPUTING, IEEE TRANSACTIONS ON SERVICES COMPUTING,
Journal of Parallel and Distributed Computing, and Journal of Computer
Science and Technology. He was the General Co-Chair of IEEE MASS
2006, IEEE IPDPS 2008, IEEE ICDCS 2013, ACM MobiHoc 2014, ICPP
2016, and IEEE CNS 2016, and the Program Co-Chair of IEEE INFOCOM
2011 and CCF CNCC 2013. He was an IEEE Computer Society Distinguished
Visitor, an ACM Distinguished Speaker, and the Chair of the IEEE Technical
Committee on Distributed Processing (TCDP). He is a CCF Distinguished
Speaker.

He Huang (Senior Member, IEEE) received the
Ph.D. degree from the School of Computer Sci-
ence and Technology, University of Science and
Technology of China (USTC), China, in 2011.
He is currently a Professor with the School of
Computer Science and Technology, Soochow Uni-
versity, China. From 2019 to 2020, he was a
Visiting Research Scholar with Florida University,
Gainesville. He has authored more than 100 papers
in related international conference proceedings and
journals. His current research interests include traffic

measurement, computer networks, and algorithmic game theory. He is a
member of the Association for Computing Machinery (ACM). He received
the Best Paper Award from Bigcom 2016, IEEE MSN 2018, and Bigcom
2018. He served as the Technical Program Committee Member for several
conferences, including IEEE INFOCOM, IEEE MASS, IEEE ICC, and IEEE
Globecom.

Sanglu Lu (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees from Nanjing University in
1992, 1995, and 1997, respectively, all in computer
science. She is currently a Professor with the Depart-
ment of Computer Science and Technology and
the State Key Laboratory for Novel Software Tech-
nology. Her research interests include distributed
computing, wireless networks, and pervasive com-
puting. She has published over 80 papers in referred
journals and conferences in the above areas.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Soochow University. Downloaded on March 10,2025 at 04:43:17 UTC from IEEE Xplore. Restrictions apply.

