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Abstract—Many crowdsourcing platforms are emerging, lever-
aging the resources of recruited workers to execute various out-
sourcing tasks, mainly for those computing-intensive video ana-
lytics with high quality requirements. Although the profit of each
platform is strongly related to the quality of analytics feedback,
due to the uncertainty on diverse performance of workers and the
conflicts of interest over platforms, it is non-trivial to determine
the dispatch of tasks with maximum benefits. In this paper, we
design a decentralized mechanism for a Crowd of Crowdsourcing
platforms, denoted as Crowd2, optimizing the worker selection
to maximize the social welfare of these platforms in a long-term
scope, under the consideration of both proportional fairness and
dynamic flexibility. Concretely, we propose a video analytics dis-
patch algorithm based on multi-agent bandit, for which the more
accurate profit estimates are attained via the decoupling of multi-
knapsack based mapping problem. Via rigorous proofs, a sub-
linear regret bound for social welfare of crowdsourcing profits is
achieved while both fairness and flexibility are ensured. Extensive
trace-driven experiments demonstrate that Crowd2 improves the
social welfare by 36.8%, compared with other alternatives.

I. INTRODUCTION

In the past decade, with the development of mobile crowd-
sourcing [1–4], more and more crowdsourcing platforms (e.g.,
Amazon Mechanical Turk [5], CrowdFlower [6]) are emerg-
ing, and they leverage the resource of crowdsourcing workers,
recruited from mobile users, to execute various crowdsourcing
tasks [7–9], such as image labelling, mobile sensing and traffic
prediction. Among those tasks, video analytics [10–13] includ-
ing object detection, identification and tracking, is attracting
much attention, with the reward highly depending on worker’s
performance like result quality [14] and execution cost [15]. In
result, the platforms need to select suitable workers and then
dispatch video analytics tasks to them for maximum profits.

However, as shown in Fig. 1, it is non-trivial to optimally
dispatch the tasks for multiple competing platforms and vari-
ous workers without priori performance profiles in video ana-
lytics. Specifically, dispatch for video analytics upon multiple
crowdsourcing platforms faces these crucial challenges:

First of all, workers’ performance in terms of video ana-
lytics quality and energy consumption is uncertain and time-
varying. As demonstrated in our case studies later, although
the relationship between video analytics accuracy and configu-
ration (i.e., frame rate and resolution) can be modeled [12, 16],
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Fig. 1. Dispatch for video analytics upon crowdsourcing platforms

the analytics accuracy varies with video content even when the
video analytics configuration is fixed. Besides, we observe that
the energy consumption for video analytics on devices fluctu-
ates over time as well [17, 18]. The stochastic fluctuations in
accuracy and energy consumption hamper the platforms from
estimating the workers’ performance accurately. Furthermore,
it is difficult to achieve a trade-off between analytics result
quality and execution cost for maximum profits.

Second, maximizing the social welfare (i.e., the total profits)
should also consider the conflicts of interest among platforms.
For platforms with similar video analytics outsourcing tasks,
they select appropriate workers from a shared crowdsourcing
worker set [19]. Each worker can be recruited by multiple
platforms and execute multiple tasks in each time period [20,
21]. However, due to the restricted capability (e.g., CPU,
RAM) of devices [22], the workers inevitably abandon some
task requests if overloaded [23]. Further, since each platform
is considered rational and selfish [24], applying a centralized
mechanism [25] to guide the exchange of private information
among multiple platforms is not practical. Therefore, a well-
designed decentralized mechanism is desired to coordinate the
worker recruitment for video analytics across platforms.

Third, fairness and flexibility should be taken into account
for platforms while designing the mechanism. When max-
imizing the social welfare, the platforms observing higher
profits tend to assign more tasks to workers with higher
analytics accuracy and lower energy consumption, thus block-
ing other platforms from better workers [26]. As studied in
prior works [27, 28], the lack of consideration for fairness
aggravates the profit differences among platforms. Besides,
the platforms can dynamically join or leave at any time [29],
leading to a varying number of platforms. The joining plat-
forms require extra time to learn about uncertain workers, and
the leaving of platforms affects the overall learning progress,
which both pose a challenge to video analytics task dispatch.
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Fig. 2. Motivation for mechanism Crowd2

Existing works fall insufficient for tackling the above chal-
lenges. Some works [30–33] focus on determining worker se-
lection for maximum crowdsourcing utility in various scenar-
ios, but few of them optimize the social welfare for platforms
that collaboratively recruit workers in a decentralized way.
Other works [10–13] research the configuration adaptation for
video analytics, but ignore the impacts of video analytics on
energy consumption and crowdsourcing profits. The rest [34–
37] investigate the stochastic changes in analytics quality or
energy consumption, but do not consider the shared resources
for multiple agents while involving the fairness and flexibility.

In this paper, we propose a decentralized mechanism for a
Crowd of Crowdsourcing platforms1 dispatching video analyt-
ics tasks to workers, named as Crowd2, which overcomes the
previous challenges. Under mechanism Crowd2, we first for-
mulate an online optimization problem with the objective of
maximizing the social welfare for multiple platforms in a long-
term scope. Specifically, the crowdsourcing profit depends on
video analytics accuracy and energy consumption, which are
time-varying and uncertain. Besides, due to the limited com-
puting capacity of workers’ devices, the computation demand
on each worker from multiple platforms is also constrained.

We then design a multi-agent bandit-based decentralized
online algorithm for video analytics dispatch upon multiple
platforms, capturing the stochastic changes on the crowdsourc-
ing profit. In order to attain more accurate profit estimates for
the bandit, we model the original mapping problem in bandit
as a multi-knapsack problem, which is decoupled into a series
of knapsack sub-problems for each worker. Furthermore, we
guarantee the fairness among platforms by means of propor-
tional fairness maximization and investigate the flexibility for
Crowd2 in terms of the varying platform number. Via rigorous
proofs, by employing our proposed algorithm based on bandit
for maximum social welfare of video analytics crowdsourcing,
which takes the fairness and flexibility into consideration, the
proportional fairness among platforms is ensured, and a sub-
linear regret bound for profits is achieved. Concretely, a regret
of O(log T ) is upper bounded by our proposed algorithm, and
when further considering the flexibility for Crowd2, anO(T ξ)
regret bound is accomplished, where 0 < ξ < 1.

1“A Crowd of Crowdsourcing platforms” means multiple platforms.

TABLE I
COMPARISON BETWEEN RELATED WORKS ON CROWDSOURCING

Existing Works Social Welfare Fairness Flexibility Uncertainty
DRL-MTVCS[20]

√ √
×

√

MCE2C[21]
√

×
√ √

Centurion[24]
√

× × ×
LOL[32] × ×

√ √

ON-DYN[33] × ×
√

×
EUWR[35] × × ×

√

Crowd2
√ √ √ √

Extensive trace-driven experiments using the videos de-
rived from PANDA dataset [38] testify to the superiority of
Crowd2 in social welfare for YOLOv5-based [39] video an-
alytics crowd-sourcing compared with other methods. Specif-
ically, the social welfare for platforms averagely increases
36.8% with 25.6% reduction in the fairness gap.

II. SYSTEM MODEL

A. Motivating Case Studies for Video Crowdsourcing

Learnability for Video Analytics. As investigated in some
existing works [12, 16], the relationship between video ana-
lytics accuracy and configuration (i.e., frame rate, resolution)
can be modeled as concave functions. However, case studies
with CentOS 7.6, Python 3.7 and YOLOv5 models [39] show
that even when the configuration is fixed, the accuracy varies
depending on the video content, as shown in Fig. 2(a). Be-
sides, the energy consumption for downloading and executing
the video analytics tasks also fluctuates over time [17, 18].
Fortunately, however, we notice that the changes in analytics
accuracy and energy consumption are bounded up and down
within a range, as demonstrated in Figs. 2(b) and 2(c). There-
fore, their expected values can reflect workers’ video analytics
performance, motivating us to design an algorithm upon ex-
ploration-and-exploitation to determine the worker selection.

Social Welfare of Crowdsourcing. For some specific video
analytics tasks, only a limited number of workers are avail-
able for recruitment [19], and the computing capacity of
their devices is also restricted [22, 23] within a specified time
period. Thus, competition for better workers incurs conflicts
of interest among platforms and then reduces the overall video
analytics quality, thereby resulting in lower social welfare. As
illustrated in Fig. 2(d), case studies based on PANDA Dataset
[38] present the reduction in overall video analytics accuracy
caused by platforms’ intensely competing for workers. On the
other hand, the lack of consideration for fairness (controlled
competition), flexibility (scheduling for platforms in and out)
and uncertainty (treating stochastic inputs), as in Table I, can
have bad effects on social welfare in the long run [28]. Thus,
it is of great necessity to tackle platforms’ conflicts of interest
for maximum social welfare, with uncertainty, while ensuring
fairness and flexibility under mechanism Crowd2.

B. System Settings and Models

We summarize the important notations in Table II.
Video Crowdsourcing. Consider the mechanism Crowd2,

with the overall time horizon divided into many time slots,
represented as T = {1, ..., T}. We denote the crowdsourcing
platform set as N = {1, ..., N}, where the platforms receive



TABLE II
MAJOR NOTATIONS USED FOR MODEL

Input Description
N {1, 2, ..., N}, set of crowdsourcing platforms
M {1, 2, ...,M}, set of crowdsourcing workers
T {1, 2, ..., T}, set of time slots for the overall time horizon

Nm,t Set of platforms dispatching analytics tasks to worker m in time slot t
cn Computation demand of platform n in each time slot
Cm Computing capacity for worker m in each time slot
an,m Video analytics accuracy for platform n recruiting worker m
en,m Energy consumption for worker m recruited by platform n

r̃n,m Observed reward of platform n dispatching analytics task to worker m
Decision Description
xn,t Worker selection for platform n ∈ N in time slot t ∈ T

the video analytics tasks from the requestors and then dispatch
them to the recruited workers. The set of available workers2

are denoted as M = {1, ...,M}, and the platforms need to
determine the worker selection for each time slot. We use xn,t
to represent the worker selected by platform n in time slot t,
and xt = (x1,t, ..., xN,t) to represent the overall decision for
all platforms. Besides, we let Nm,t be the set of platforms
that dispatch the tasks to the worker m in time slot t.

Analytics Accuracy. According to the existing works [12,
13, 32], we attain two important observations for profiling the
relationship between video analytics configuration and accu-
racy: a) frame rate sampling and frame resolution adaptation
impact accuracy independently; b) relationship between reso-
lution/frame rate and accuracy can be modeled as a concave
function. Based on them, the accuracy for video analytics
dispatched to worker m by platform n can be calculated as

an,m = φm(fn)εm(sn), (1)

where the concave functions φm(f) and εm(s) mean the
accuracies with respect to frame rate f and resolution s when
the video analytics task is executed by worker m. Besides,
the frame rate and resolution of the video from platform n
are represented as fn and sn, respectively.

Energy Consumption. For crowdsourcing workers with
mobile devices, the battery is one of the most concerns [32]
because it is not convenient to recharge the devices. Since the
energy consumption mainly consists of transmission energy
and processing energy, we calculate the energy consumption
for worker m when executing the task from platform n as

en,m = (γm + µm)fnα(sn)2, (2)

where α(s)2 is used to represent the data size of a frame with
resolution s, and α is a constant [12, 40]. Besides, we let γm
and µm be the energy consumption for downloading and pro-
cessing, respectively, one bit of video data for analytics [41].

Profit of Crowdsourcing. For each platform, we use V (n)
to denote the intrinsic task value (e.g., the paid money from
the task requestor) in each time slot. Additionally, the quality
of analysis results and energy consumption are the other two
important factors, which influence crowdsourcing profit. Thus,
we calculate the crowdsourcing profit for each platform n
which dispatches the video analytics task to worker m as

rn,m = V (n) +A(n,m)− E(n,m), (3)
2M denotes the set of all workers. However, in the real world, each plat-

form may only reach a subset of workers, and we will explain it in Section IV.
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where we let A(n,m) = Gn(an,m) represent the potential
benefits from the video analytics quality (e.g., higher accuracy
will attract more video analytics task requests), and a concave
function Gn(a) is used as the revenue function with respect
to accuracy a for crowdsourcing platform n [42]. Besides, we
let E(n,m) = ωmen,m represent platform n’s payment to
worker m, which mainly covers the execution cost for energy
consumption, and ωm denotes the payment priced by worker
m for consuming each unit of energy [43].

Restricted Ability of Workers. Similar to prior works [22,
23], there exists a computing capacity constraint Cm for each
worker m in each time slot t. When the computation demand
on worker m exceeds its computing capacity, some of the
tasks dispatched from platforms will be abandoned, thereby
resulting in rn,m = 0. Thus, for each worker m, it holds that∑

n∈Nm,t

cn ≤ Cm, (4)

where we assume that the computation demand is proportional
to the input video data size, as considered in [44], and it is
denoted as cn = βnfnα (sn)

2 using proportionality factor βn.

C. Problem Formulation

Due to the uncertainty and various types of accuracy model
functions (i.e., εm and φm) during video analytics and en-
ergy consumption rates (i.e., γm and µm) for crowd workers,
each platform can only observe an independent identically dis-
tributed (i.i.d.) random reward r̃n,m(t) in each time slot t, with
rn,m = E [r̃n,m(t)] , r̃n,m(t) ∈

[
rmin, rmax

]
,∀n ∈ N ,∀m ∈

M, where the positive value rmin and rmax represent the
lower and upper reward bounds, respectively. To maximize
the social welfare for all platforms in Crowd2, we formulate
the utilitarian compound reward optimization problem as

P : max
{xt|t∈T }

∑
t∈T

∑
n∈N

E[r̃n,xn,t(t)]

s.t.
∑

n∈Nm,t

cn ≤ Cm,∀m ∈M, ∀t ∈ T .

Problem Challenge. The major difficulty in obtaining the
optimal solution for P is the uncertainty of the varying ob-
served reward r̃n,xn,t(t). Thus, an online approach is required
to efficiently determine the worker selection for platforms
by exploring and exploiting the observed rewards. Besides,
the fairness and flexibility for mechanism Crowd2 are also
of great importance, and we are expected to take them into
consideration when designing the algorithm.

III. DECENTRALIZED ONLINE ALGORITHM DESIGN

The design of our proposed algorithm for Crowd2 is shown
in Fig. 3. To capture the stochastic changes on the reward,



we first present the video analytics dispatch based on multi-
agent bandit in Alg. 1, considering the fairness and flexibility.
Further, to obtain more accurate reward estimates for bandit,
Alg. 2 is invoked to decouple the original mapping problem
into a series of knapsack sub-problems for each worker.

A. Problem Transformation for Fairness
In order to maximize the utilitarian compound reward in P,

the platforms observing higher rewards tend to dispatch more
tasks to the workers with higher video analytics quality and
lower energy consumption, thereby blocking other platforms
from the “better” workers and then causing the unfair worker
recruitment for video analytics in Crowd2. To avoid the above
undesirable outcome, we use the proportional fairness maxi-
mization [27, 45] to guarantee fairness among platforms. We
first present the definition of proportional fairness as
Definition 1 (Proportional Fairness). In time slot t, a deci-
sion x∗t = (x∗1,t, ..., x

∗
N,t) has the property of proportional

fairness if and only if for any other feasible decision x′t =
(x′1,t, ..., x

′
N,t), the following inequation always holds:∑

n∈N
(rn,x′n,t − rn,x∗n,t)/(rn,x∗n,t) ≤ 0. (5)

The intuition behind proportional fairness is as follows: for
the platform n selecting the worker of the highest reward
under the “fairest” decision x∗t , if we try to obtain a more
“fair” decision that reduces platform n’s reward and improves
others’, we will find that no more “fair” decision is feasible
because the highest reward rn,x∗n,t serves as the denominator
in inequation (5), and the decrease in it will violate the in-
equation. Similarly, the above intuition can also be used as the
explanation for the platform of the lowest reward. Therefore,
the decision x∗t based on the definition of proportional fairness
is indeed a “fair” decision. To maximize social welfare while
ensuring the fairness, we design the utility function as

un,xn,t(rn,xn,t) = ln(1 + ρrn,xn,t), ρ > 0, (6)

for each platform according to Proposition 1 [29] as follows.
Proposition 1. Set un,xn,t(rn,xn,t) = ln(1 + ρrn,xn,t), ρ > 0,
and then the optimal solution x∗t for maxxt

∑
n∈N un,xn,t

satisfies the inequation (5) of Proportional Fairness.
Proof. See Appendix A, upon the concavity of Eq. (6).

Problem Transformation. Based on the above proposition,
we transform problem P into P1 and modify its optimization
objective, which takes the proportional fairness into consider-
ation. Thus, the problem P1 is formulated as

P1 : max
{xt|t∈T }

∑
t∈T

∑
n∈N

E[ũn,xn,t(t)]

s.t. ũn,xn,t(t) = ln(1 + ρr̃n,xn,t(t)),∑
n∈Nm,t

cn ≤ Cm, ∀m ∈M, ∀t ∈ T .

Accordingly, instead of r̃n,m(t), we observe the i.i.d. random
reward value ũn,m(t), with un,m = E [ũn,m(t)] , ũn,m(t) ∈[
umin, umax

]
,∀n ∈ N ,∀m ∈ M, where the positive umin

and umax are the lower and upper reward bounds, respec-
tively. Based on the proportional fair reward un,xn,t , which
contributes to the fairness for Crowd2, we propose the video
analytics dispatch algorithm in the following subsections.

Algorithm 1: Video Dispatch with Multi-agent Bandit

Input: Texplore=d25(Nmax)2(umax−umin)2M

2(δmin)2
e, Texploit=2τ

1 ũτn,m ← 0, ∀n ∈N , ∀m ∈M,∀τ = 0, 1, 2, ...;
2 for epoch τ = 1 to τT do

// Exploring
3 for time slot t = 1 to Texplore do
4 for batch b = 1 to d N

NminM
e do

5 Each platform n in batch b sends video analytics
task to worker b((n+t)%(NminM))/Nminc+1;

6 ũτn,m ← (ũτ−1
n,m × (τ − 1) + ũn,m)/τ ;

// Mapping
7 Call Alg. 2 with input {ũτn,m} and Π = 0;

// Exploiting
8 for time slot t = 1 to Texploit do
9 Platforms dispatch video analytics tasks upon Π;

B. Video Analytics Dispatch with Multi-agent Bandit

The uncertainty and variability of rewards motivate us to de-
sign an exploration-and-exploitation based algorithm. As some
existing prior studies [34–37], multi-armed bandit methods,
which involve the tradeoff between exploration and exploita-
tion, are usually leveraged to learn the random rewards
from multiple “bandits”. However, since the platforms recruit
workers in a decentralized way, directly applying the multi-
armed bandit method to each platform may lead to conflicts of
interest. Furthermore, the intrinsic task values of all platforms
are different, which requires an extended multi-armed bandit
method considering the heterogeneity of platforms. Therefore,
we propose a multi-agent multi-armed bandit based decen-
tralized algorithm to tackle the video analytics dispatch for
crowdsourcing platforms in Crowd2 as shown in Alg. 1.

Regret. When using the bandit-based Alg. 1 for P1, the
regret to quantify the dispatch performance is defined as

R(T )=T
∑

n∈N
un,x∗n,t−

∑T

t=1

∑
n∈N

E[ũn,xn,t(t)], (7)

where the decision {x∗n,t,n∈N, t∈T } is optimal for P1, and
{xn,t,n∈N, t∈T } is obtained from Alg. 1. We then divide
the overall time horizon T into multiple epochs {1, . . . , τT },
where each epoch consists of a variable number of time slots
and τT represents the last epoch index. In order to achieve the
crucial balance between video analytics dispatch exploration
and exploitation, we construct three phases for each epoch,
including exploring, mapping, and exploiting as follows.

Exploring. Exploration phase occupies Texplore time slots in
each epoch, and we propose a batch-based dispatch scheme for
reward exploration. In each batch, a group of NminM plat-
forms dispatch their tasks to the corresponding workers as

xn,t ← b((n+ t)%(NminM))/Nminc+ 1, (8)

which is illustrated in line 5. For the group size NminM , we
set Nmin = minm∈M{Cm}

maxn∈N {cn} as the ratio between the minimum
worker capacity and maximum platform demand such that any
worker computing capacity will not be violated in exploration.
The estimated reward ũτn,m is initialized as 0 and updated as

ũτn,m ← (ũτ−1
n,m × (τ − 1) + ũn,m)/τ, (9)



Algorithm 2: Mapping upon Multi-Knapsack Problem
Input: {ũτn,m},Π = 0

1 for worker m = 1 to M do
2 for platform n = 1 to N do
3 if Πn 6= 0 then
4 ∆ũτn,m ← ũτn,m − ũτn,Πn ;

5 else
6 ∆ũτn,m ← ũτn,m;

7 Worker m tackles P3 with input {∆ũτn,m};
8 for platform n = 1 to N do
9 if worker m accepts platform n’s task then

10 Update Πn ← m;

Output: Π

by calculating the expectation of all explored observations
from the beginning to the current epoch τ in line 6.

Mapping and Exploiting. After exploring the estimated
rewards, we invoke Alg. 2 with input3 {ũτn,m} to yield the
mapping result Π = {Πn}, which will be elaborated in the
next subsection. At last, exploitation phase in each epoch lasts
for Texploit = 2τ time slots, which can also be replaced with
other exponential forms (explained in Appendix E), and all
platforms dispatch video analytics tasks to the workers obey-
ing the mapping result Π from Alg. 2 to fully exploit rewards.

C. Mapping upon Multi-Knapsack Problem

For mapping phase, the goal is to obtain the video analytics
dispatch mapping Π from the platforms to workers based on
estimated rewards {ũτn,m}, and it can be modeled as a multi-
knapsack problem for each time slot t [46]:

P2 : max
xt

∑
n∈N

ũτn,xn,t

s.t.
∑

n∈Nm,t

cn ≤ Cm,∀m ∈M,

which is usually considered NP-hard, and cannot be optimally
solved in polynomial time [47]. In order to tackle the above
intractable challenge, we design a multi-knapsack based map-
ping algorithm as shown in Alg. 2.

Decoupling Multi-knapsack. We first decouple the multi-
knapsack problem P2 into a series of knapsack sub-problems
based on the reward improvement ∆ũτn,m defined as

∆ũτn,m ←

{
ũτn,m − ũτn,Πn , if Πn 6= 0,

ũτn,m, otherwise,
(10)

which intuitively marks the improved reward if platform n’s
video analytics task is dispatched to another worker. We then
represent each knapsack sub-problem with the optimization
objective using ∆ũτn,m for worker m as

P3 : max
xt

∑
n∈Nm,t

∆ũτn,m

s.t.
∑

n∈Nm,t

cn ≤ Cm.

Iteratively Updating Π. For each worker m, sub-problem
P3 can be efficiently solved using branch-and-bound method

3For ease of expression, let {ũτn,m} and {∆ũτn,m} represent the sets of
ũτn,m and ∆ũτn,m for {∀n∈N ,m∈M, τ ∈{1, ..., τT }}, respectively.
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A Running Example with 4 platforms and 3 workers
Task computation demand = {2,3,1}. Worker computing capacity = {4,3,3}.
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Fig. 4. Running example for Alg. 2 with 3 platforms and 3 workers

[48, 49] with {∆ũτn,m} as shown in line 7, i.e., gradually
improving the video analytics task dispatch reward. If the
solution to P3 results in platform n dispatching its task to
worker m, we update Πn ← m in line 10 and then recalculate
the values for {∆ũτn,m} when tackling the next knapsack sub-
problem for worker m← m+ 1. Finally, the output mapping
Π is used as a basis for the exploiting phase in Alg. 1. Notably,
the mapping phase has a length of M time slots, which is
corresponding to the M crowdsourcing workers.

Running Example. We give an example for Alg. 2 in
Fig. 4, where there are 3 platforms and 3 workers. Assume that
the task computation demand of the 3 platforms is (2, 3, 1),
and the computing capacity of the 3 workers is (4, 3, 3). We
show {∆ũτn,m} in matrix U1, and ũτn,m is located in the m-th
row and the n-th column of U1. For worker m1, we attain the
optimal solution for P3 as Sm1 = {n1, n3}, which means that
worker m1 accepts the tasks from platform n1 and n3. After
that, to efficiently update the improved reward matrix as lines
3-6 in Alg. 2, we build the matrix U1

1 composed of 3 parts. The
first part is the m1-th row, where the elements are the same as
U1. In the rest of U1

1 , the second part is the columns n1 and
n3, where the elements are the same as row m1. The third part
is the remaining part, which is filled with zeros. Based on U1

1 ,
we can easily calculate the matrix U2

1 = U1−U1
1 , and then the

updated improved reward matrix U2 can be quickly obtained
by removing the row m1 in U2

1 . Similarly, we can attain the
optimal solutions of P3 for worker m2 and m3. Thus, the final
output Π of Alg. 2 is {Π1 = n1,Π2 = n2,Π3 = n3}.

D. Ensured Flexibility Produced by Crowd2

Furthermore, in our proposed mechanism Crowd2, the plat-
forms may dynamically join or leave the platform set, which
will lead to a varying platform number N and pose a challenge
to our design. Thus, it is essential to consider the flexibility
of Crowd2, which allows the entry and exit of platforms.

(i) We first discuss the impact of platforms’ leaving. For the
case of leaving, since the remaining platforms have explored
sufficient samples of rewards, which are utilized for the later
phases of mapping and exploiting, our proposed multi-agent
multi-armed bandit-based video analytics dispatch algorithm
still works and achieves a logarithmic regret bound with
respect to T , which is rigorously proved in Section IV.

(ii) For case of joining, we denote the platform number in
epoch τ as Nτ . Different from the case of leaving, platforms’
dynamic entering causes an unbounded exploration error prob-
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ability because the newly joining platforms have not explored
enough times to obtain accurate estimates for proportional
fair rewards, which will decrease the performance of mapping
and exploiting. However, as shown in Theorem 2 of the next
section, Alg. 1 with N = Nτ still ensures the flexibility for
Crowd2 and achieves a sub-linear regret with respect to T .

IV. PERFORMANCE ANALYSIS

The roadmap for theoretical analysis is illustrated in Fig. 5.
The main result about the regret of social welfare in Crowd2

is shown in Theorem 1. Furthermore, the regret of social
welfare considering flexibility is shown in Theorem 2.

Lemma 1 (Bounded Exploration Error). After the τ -th epoch
of exploration in Alg. 1, error probability is bounded:

Pr(|ũτn,m − un,m| > δmin/(5Nmax)) ≤ 2NMe−τ , (11)

where Nmax=maxm∈M{Cm}
minn∈N {cn} , and δmin=min{δ1min,δ

2
min,δ

3
min}

in which δ1min = minn 6=n′∈N ,m∈M{|un,m − un′,m|}, δ2min =
minn 6=n′∈N ,m 6=m′∈M{|(un,m − un,m′) − un′,m|}, δ3min =
minn 6=n′∈N ,m′ 6=m6=m′′∈M{|(un,m−un,m′)−(un′,m−un′,m′′)|}.
Proof. See Appendix B, via Hoeffding inequality [50].

Lemma 2 (Guaranteed Mapping Accuracy). If it holds that

|ũτn,m − un,m| ≤ δmin/(5Nmax), (12)

then through Alg. 2, the mapping result Π derived from the
observed reward estimates {ũτn,m} is the same as that from
the expected rewards {un,m,∀n∈N ,m∈M}.
Proof. See Appendix C, with the proof by contradiction.

Lemma 3 (Approximation Ratio for Multi-Knapsack). With
the optimal solution to the knapsack problem P3 upon branch-
and-bound method, Alg. 2 can obtain a 2-approximate solu-
tion to the multi-knapsack problem P2.

Proof. See Appendix D, via mathematical induction [48].

Theorem 1 (Bounded Regret). When Alg. 1 is adopted to
solve problem P1 without certain information of expected
rewards {un,m,∀n∈N ,m∈M}, the regret is bounded as

R(T ) ≤ (Texplore +M)Numax log2(T + 2) + 8N2Mumax

= O(log2 T ).

Proof. See Appendix E, combining Lemmas 1, 2 and 3.

Theorem 2 (Bounded Regret for Flexibility). For the case of
leaving, through Alg. 1, the regret is still bounded as R(T ) ≤
O(log2 T ). For the case of joining, denote the epoch of the
last platform entering as τ ′, the regret is bounded as

R(T ) ≤ O(log2 T ) + 2O(log2 T
ξ)Mumax ≤ O(T ξ),

where ξ ∈ (0, 1) ensures inequation τ ′ ≤ O(log2 T
ξ) holds.

Proof. See Appendix F, combining Lemmas 1, 2 and 3.

TABLE III
DESCRIPTION FOR TESTBED, INPUT DATASET AND ANALYTICS MODEL

Content Description
3 * PowerEdge R740 Silver 4210R 2.4G, 2 * 16GB RDIMM
3 * Raspberry Pi 4 ARM Cortex-A72 1.5GHz, 2GB RAM

Sales Product Dataset [51] Sales data involving price, used as task values
PANDA Dataset [38] Human-centric videos with wide field of view
YOLOv5n/s/x [39] A family of compound-scaled detection models
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Fig. 6. CDFs of video analytics accuracy in our dataset

Remarks. Lemma 1 states that after a specified number of
epochs for exploration, the estimated reward ũτn,m becomes
sufficiently close to the expected reward un,m with a high
probability. Note that if δmin is too small and then leads to
a prohibitively long exploration length Texplore as the input to
Alg. 1, we can adjust δmin to be large enough in practice
since Texplore in Lemma 1 simply ensures an upper bound on
exploration error. The logarithmic regret bound we derive in
Theorem 1 is tight since a lower log T regret bound can be
deduced in a centralized way [25]. Besides, the reason for
limiting τ ′ in Theorem 2 is to prevent a large exploitation
regret caused by inaccurate reward estimates of newly joining
platforms. Finally, when platform n can only reach a subset of
workers Mn∈M, the above regret analysis keeps unchanged
as the rewards on Mn can still be learned for sufficient times.

V. EXPERIMENTS AND RESULT ANALYSIS

In this section, we demonstrate the superior performance of
our proposed algorithm compared with other alternatives by
both testbed-based experiments and scalable simulations.

A. Experiment Settings

Our testbed-based experiments are conducted on the Pow-
erEdge R740s and Raspberry Pi 4s, which act as platforms and
workers, respectively. For platforms, real video datasets [38]
are used for video analytics tasks dispatched to workers, each
equipped with a different video analytics model [39], as shown
in Table III and Fig. 6. Based on the traces from [17, 32],
the transmission energy consumption γn is set as 5×10−6 J,
and energy consumption of local processing is uniformly 5 J
per frame. We generate the intrinsic task value V (n) upon the
dataset of Sales Product [51]. Besides, we set the parameters
α= 1, Gn as the logarithmic form and ωm∼U(0, 10). Fur-
thermore, according to [22, 23, 52], the computation demand
cn is set in [0.5, 1], and the capacity Cm is in [1.5, 2].

We compare our proposed algorithm with other schemes:
• Single-Agent Bandit (SAB) [32] designs, for each plat-

form, a multi-armed bandit-based dispatch method using
upper confidence bound (UCB) for video analytics.

• NOt considering Fairness (NOF) [21] aims to maximize
the social welfare, i.e., the utilitarian compound reward in
P, not considering the proportional fairness.
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Fig. 8. Evaluations for the social welfare, fairness and flexibility in mechanism Crowd2

• Unsolved Conflicts of Interest (UCI) decides the worker
selection based on their performance for video analytics,
regardless of the conflicts of interest among platforms.

• BruteForce for Multi-knapsack (BFM) solves, as an al-
ternative to Alg. 2, P2 of multi-knapsack upon bruteforce.

• RANdomized dispatch for platforms (RAN) dispatches
video analytics tasks to workers randomly for platforms.

B. Experiment Results

Running Instance on Testbed. We demonstrate a small-
scale running instance based on testbed with 3 platforms and
3 workers to verify the performance of Crowd2. For video an-
alytics, the platform first divides its video data into multiple
chunks, each of which lasts for 1 second, and then dispatches
one chunk to the recruited worker in each time slot. As shown
in Fig. 7(a), the time-averaged reward from Crowd2 is more
than other algorithms, especially after the first 100 time slots,
where more and more accurate profits estimates are obtained
for the multi-agent bandit. SAB based on multi-armed bandit
may tradeoff between exploration and exploitation, and then
recruit unfamiliar and incompetent workers. Further, it cannot
effectively learn the reduction in the performance of workers
caused by the conflicts of interest, thus lowering the rewards of
social welfare, which, however, can be avoided by the phases
of exploration and mapping in Crowd2. Besides, since RAN
randomly selects workers for video analytics, it may recruit the
workers leading to lower profits. Nevertheless, RAN achieves
higher social welfare than UCI, which tends to select workers
with higher performance, resulting in lower social welfare due
to conflicts of interest. As shown in Fig. 7(b), our Crowd2

achieves the lowest regret that satisfies the logarithmic bound
with respect to slot number T , and outperforms other schemes.
To dive into the social welfare changes by Crowd2, we illus-
trate the 3 components of social welfare and the profit for
each platform in Fig. 7(c) and Fig. 7(d), respectively. When
each epoch begins, the three components of profits including
the intrinsic task value, video analytics benefit and energy

consumption cost will greatly fluctuate due to the exploration
and mapping. Besides, as the number of epochs increases, the
time-averaged reward for each platform also gradually rises.

Approximation for Mapping. We compare our proposed
Alg. 2 with BFM, which solves the multiple knapsack problem
by means of brute force, as shown in Fig. 8(a). To conveniently
demonstrate the effectiveness of Alg. 2, we show the half
values of optimal social welfare obtained by BFM, and it
can be observed that our proposed algorithm achieves the 2-
approximate solutions regardless of the number of platforms.
Besides, we compare the time cost by Alg. 2 and BFM. When
the number of platforms increases, the computational time of
BFM grows exponentially while the time cost caused by our
proposed algorithm of mapping upon multi-knapsack remains
stable, which reflects that our mechanism Crowd2 is efficient.

Fairness for Crowd2. To confirm the fairness guaranteed
by Crowd2, we compare our proposed algorithm with NOF,
which simply maximizes the utilitarian compound reward. As
shown in Fig. 8(b), we find our proportional fairness-based
profit maximization, with the parameter ρ, greatly reduces the
fairness gap, which is represented as the profit variance [27].
In addition, we study the impact of parameter ρ with different
values on fairness. As parameter ρ increases, the fairness can
be further guaranteed due to the fact that the gradient of the
logarithmic function with larger ρ will get smaller, which leads
to the difference among platforms shrinking. Furthermore, we
explore the effect of introducing fairness guarantees on social
welfare, and it can be noticed that when the parameter ρ is set
as 0.01, at the cost of sacrificing at most 7.5% crowdsourcing
welfare, we reduce the fairness gap by 25.6%.

Flexibility for Crowd2. For the case of leaving, as shown
in Fig. 8(c), one platform exits at about the 50th time slot.
With the platform leaving, since the remaining platforms in
Crowd2 can still leverage the learned information to schedule
subsequent video analysis tasks, the regret values are kept in
logarithmic forms, consistent with Theorem 2, as shown in the
upper sub-figure of Fig. 8(c). Besides, compared with SAB,
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which learns the worker performance via single-agent bandit,
Crowd2 achieves lower time-averaged regret, especially after
the 100th time slot. For the case of joining, as illustrated in
Fig. 8(d), there is one platform joining at the 50th time slot.
Our proposed Crowd2 and SAB both need to spend some time
slots to explore the workers for the new platform, which has an
impact on the regret. Regarding the regret changes shown in
the upper sub-figure of Fig. 8(d), the regret bound of Crowd2,
consistent with theoretical analysis, remains in a sub-linear
form. Furthermore, due to the joining of the new platform,
the time-averaged regret of SAB experiences a sudden rise at
about the 50th time slot, which is higher than Crowd2.

Scalability on platform/worker number. We finally eval-
uate the scalability of our proposed Crowd2, when changing
the number of platforms and workers. As shown in Fig. 9,
we vary the numbers of platforms and workers from 4 to 20,
and find that our proposed algorithm can achieve higher social
welfare than other algorithms, which reflects the scalability of
Crowd2. Concretely, compared with others, our proposed al-
gorithm averagely improves 36.8% social welfare.

VI. RELATED WORK

We summarize the prior existing works by the following
categories and then highlight their defects compared with ours.

A. Worker Recruitment for Crowdsourcing

Liu et al. [30] studied the sparse crowdsensing considering
online workers with dynamically coming data and proposed
the OS-MCS framework consisting of matrix completion, im-
portance estimation and worker recruitment. Wang et al. [31]
designed a privacy-preserving online task assignment frame-
work to minimize the total travel distance with the assigned
task cardinality constraint. Chen et al. [32] formulated a mixed
integer program maximizing the crowdsourcing profit to deter-
mine the most suitable workers upon Lyapunov optimization
and volatile multi-armed bandit. Liu et al. [33] proposed a
dynamic worker recruitment strategy with truthful pricing for
online recruitment problems constrained by budget and time.

These works focus on determining worker selection to max-
imize the crowdsourcing utility in various scenarios. However,
almost no work considers the social welfare for the crowd-
sourcing platforms which collaboratively recruit workers in a
decentralized way, and it is covered in our Crowd2.

B. Configuration for Video Analytics

DDS [10] leveraged the compression and streaming behav-
iors driven by the feedback from server-side DNNs rather than

the low-complexity heuristics from cameras to reduce band-
width usage while maintaining higher accuracy. Reducto [11]
was built as a system adapting filtering decisions dynamically
based on the time-varying correlations between video content,
feature type, filtering threshold and query accuracy. JCAB [12]
was proposed as an efficient online algorithm optimizing the
configuration adaption and bandwidth allocation in edge-based
video analytics systems. Chameleon [13] used several tech-
niques including exploiting the independence of configuration
knobs, temporal persistence of configurations and cross-video
similarities to dramatically reduce cost and improve accuracy.

These works consider the configuration adaptation for video
analytics, but fail to consider the impact of video analytics on
energy consumption and crowdsourcing profits.

C. Multi-Armed Bandit-based Optimization

Xiong et al. [34] proposed a fluid Whittle index policy
determining dimensioning and content caching to tackle the
restless multi-armed bandit problem of minimizing the costs
with respect to storage and latency. Gao et al. [35] considered
the unknown worker recruitment problem and proposed a
combinatorial multi-armed bandit-based worker recruitment
algorithm. Song et al. [36] designed a novel worker recruit-
ment mechanism for minimum empirical entropy of the results
from participating workers by means of combinatorial multi-
armed bandit. Yang et al. [37] investigated contextual bandit
with predicted context and proposed selective context query
algorithms for more accurate context subject to query budget.

These works leverage multi-armed bandit to tackle the op-
timization problem in different scenarios. However, they fail
to consider multiple agents to explore and exploit the shared
resources while taking into account fairness and flexibility.

VII. CONCLUSION

To maximize the social welfare for crowdsourcing platforms
dispatching video analytics tasks, we propose a decentralized
mechanism Crowd2, considering both fairness and flexibility.
For maximum crowdsourcing profits depending on video ana-
lytics accuracy and energy consumption, which are uncertain
and time-varying, we optimize the worker selection based on
multi-agent multi-armed bandit in long term, decoupled into
multiple knapsack sub-problems for each worker. Via rigorous
proof, a sub-linear regret for profits is guaranteed. Extensive
trace-driven experiments show the superiority of our proposed
mechanism Crowd2 compared with other existing works.

APPENDIX

A. Proof of Proposition 1

Proof. Since un,xn,t(rn,xn,t) = ln(1 + ρrn,xn,t) is a con-
cave function, it is satisfied that for any other decision x′n,t,

∇un,x∗n,t(rn,x∗n,t)(rn,x′n,t − rn,x∗n,t) ≤ 0.

Therefore, according to [45], for the optimal solution x∗t , it

always holds that
∑
n∈N

rn,x′n,t
−rn,x∗n,t

rn,x∗n,t
≤ 0.



B. Proof of Lemma 1
Proof. Denote event A as {∃n∈N ,m∈M, |ũτn,m−un,m|>
δmin

5Nmax
}. After the τ -th epoch of exploration in Alg. 1, each

platform n observes the reward from worker m at least

Tmin ≥ Texplore

M τ ≥ 25N2
max(u

max−umin)
2

2(δmin)
2 τ times. Therefore, the

exploration error probability can be calculated as
Pr(A|Tmin) ≤

∑
n∈N

∑
m∈M

Pr(|ũτn,m−un,m| >
δmin

5Nmax
)

≤ NM max
n∈N ,m∈M

Pr(|ũτn,m−un,m| >
δmin

5Nmax
)

(a)

≤ 2NMe
− 2(δmin)2Tmin

25N2
max(umax−umin)2 ≤ 2NMe−τ ,

where inequation (a) is from Hoeffding inequality [50].
C. Proof of Lemma 2
Proof. According to Lemma 1, it always holds that

Pr(|ũτn,m − un,m| ≤ δmin/(5Nmax)) > 1− 2NMe−τ ,
for the mapping phase running in Alg. 2, and then we define
δn,m = ũτn,m−un,m. Besides, denote the mapping result under
expected rewards {un,m,∀n∈N ,m∈M} as Π = {Πn, n∈
N } and the decision induced from Π as x = {xt, t ∈ T }.
Then, we discuss the knapsack sub-problem corresponding to
worker m under the updating mapping Π and Π, separately.

For the updating mapping Π, we define
Optm(x) =

∑
n∈N

∆un,m =
∑

n∈N
un,m − un,Πn

and
Õptm(x) =

∑
n∈N

∆ũτn,m =
∑

n∈N
ũτn,m − ũτn,Πn .

Then, with the probability of more than 1−2NMe−τ , we have

Optm(x)− Õptm(x) ≤ Nmax max{|δn,m|+ |δn,Π̄n |}

≤ Nmax
2δmin

5Nmax
≤ 2δmin/5.

Similarly, for the updating mapping Π and the decision x =
{xt, t∈T } induced from Π, we define

Optm(x) =
∑

n∈N
∆un,m =

∑
n∈N

un,m − un,Πn
and

Õptm(x) =
∑

n∈N
∆ũτn,m =

∑
n∈N

ũτn,m − ũτn,Πn .

Then we can also obtain Õptm − Optm(x) ≤ 2δmin/5.
According to the above inequations, we have

Optm(x)− Optm(x)

= Optm(x)− Õptm(x) + Õptm(x)− Optm(x)

(b)

≤ Optm(x)− Õptm(x) + Õptm(x)− Optm(x)
(c)

≤ 4δmin/5,

where inequation (b) is in that Õptm(x) ≤ Õptm(x) always
holds under the input rewards {∆ũτn,m, n ∈N }.

Besides, based on the definition of δmin, we have
Optm(x)− Optm(x) ≥ δmin,∀m ∈M ,

which is contradictory to inequation (c). Thus, it must hold
that Optm(x) = Optm(x),∀m ∈ M , which means x is
actually x. Therefore, through Alg. 2, the mapping result Π
derived from the estimated rewards {ũτn,m} is the same as that
from the expected rewards {un,m,∀n∈N ,m∈M}.
D. Proof of Lemma 3
Proof. Due to page limit, we prove Lemma 3 based on the
running example as shown in Figure 4, and more details can
be found in [48]. The proof is presented by induction.
Base case. When the worker number is 1 (e.g., worker m3),
the optimal solution to knapsack sub-problem is indeed a 2-
approximate solution to multi-knapsack sub-problem.

Inductive step. We then consider the worker number of 2
(e.g., worker m2 and m3). According to the base case, the
derived mapping upon matrix U3 is 2-approximate, and it is
also true for U2

2 , which only has one more row of 0 than U3.
On the other hand, we separately discuss the reward gains

resulting from the three parts in U1
2 . For the 1st part, the

optimal solution Sm2
of knapsack sub-problem for worker m2

is optimal to part 1 in U1
2 as well. For the 2nd part, the optimal

reward gain from part 2 in U1
2 will not exceed that of part 1

due to the fact that the columns covered in Sm2 are the same
as those in part 2. The remaining part 3 will not contribute
to the reward gain since it is filled with 0. Furthermore, Sm2

is the subset of the derived mapping, and thus the derived
mapping upon U1

2 is also a 2-approximate solution.
To sum up, the derived mapping upon both U1

2 and U2
2 is

2-approximate. Besides, we have U2 = U1
2 + U2

2 . Therefore,
the derived mapping upon U2 is also 2-approximate.
Conclusion. By induction, the derived mapping upon U1 is
also 2-approximate, which means that the approximation ratio
for multi-knapsack problem through Alg. 2 is 2.

E. Proof of Theorem 1
Proof. We first bound τT using T . Since the exploiting phase
occupies 2τ time slots for epoch τ in Alg. 1, we have
T ≥

∑τT
τ=1 2τ = 2(2τT − 1), which means τT ≤ log(T + 2),

and it still holds when we replace Texploit = 2τ with other ex-
ponential forms (e.g., 3τ ). We represent the regret for P2 as

R(T )
(d)

≤
τT∑
τ=1

(TexploreNu
max+MNumax+2NMe−τTexploitNu

max)

(e)

≤ (TexploreNu
max+MNumax)τT +4N2Mumax/(e−2)

≤ (TexploreNu
max+MNumax) log(T+2)+8N2Mumax

=O(log2 T ),

where inequation (d) represents the sum of regrets from the
3 phases in Alg. 1, and (e) combines Lemmas 1-3.

F. Proof of Theorem 2
Proof. For the case of leaving, we denote the platform number
in epoch τ as Nτ . After some platform leaves, we have Nτ ≤
N , and then the exploration error probability P satisfies P≤
2NτMe−τ≤2NMe−τ , thus leading to a regret of O(log2 T ).

For the case of joining, denote τ ′ as the epoch of the last
platform entering, and it holds that τ ′≤O(log2 T

ξ), ξ∈ (0, 1).
Thus, we have ∀τ ≥ τ ′,P ≤ 2NτMe−(τ+1−τ ′). Furthermore,
there must exist ξ ∈ (0, 1), τ0 ∈ [τ ′,O(log2 T

ξ)] such that
∀τ ≥ τ0, 2NτMe−(τ+1−τ ′) × 2τ ∼ O(1). Therefore, we get
the upper bounded regret for the case of joining as

R(T )
(f)

≤ 2×O(log2 T )+

τT∑
τ=1

Mumax×2τ×2NτMe−(τ+1−τ ′)

(g)

≤ O(log2 T )+
∑τ0−1

τ=1
Mumax×2τ+

∑τT

τ=τ0
O(1)

≤ O(log2 T )+Mumax×2O(log2 T
ξ)+O(log2 T ) ≤ O(T ξ),

where inequation (f) represents the sum of regrets from the
3 phases in Alg. 1, and upon Lemmas 1-3, (g) separately
considers the exploitation regret before and after epoch τ0.
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