
Computer Networks 200 (2021) 108513

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

VCMaker: Content-aware configuration adaptation for video streaming and
analysis in live augmented reality
Ning Chen, Sheng Zhang ∗, Siyi Quan, Zhi Ma, Zhuzhong Qian, Sanglu Lu
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

A R T I C L E I N F O

Keywords:
Mobile augmented reality
Deep reinforcement learning
Video configuration adaptation

A B S T R A C T

The emergence of edge computing has enabled mobile Augmented Reality (AR) on edge servers. We notice
that the video configurations, i.e., frames per second (fps) and resolution, significantly affect the key metrics
such as detection accuracy, data transmission latency and energy consumption in real AR application. Besides
the time-varying bandwidth, we observe that the video contents, such as moving velocities of target objects,
have remarkable impacts on the configuration selection. In addition, we take the energy consumption on
data transmission into consideration. In this paper, we propose VCMaker, a system that generates video
configuration decisions using reinforcement learning (RL). VCMaker trains a neural network model that selects
configuration for future video chunks based on the collected observations. Rather than rely on any pre-
programmed models, VCMaker learns to make configuration decisions solely through empirical observations
of the resulting performances of historical decisions. In addition, we leverage the dynamic Region of Interest
(RoI) encoding and motion vector-based object detection mechanisms to advance VCMaker. We implemented
VCMaker and conducted extensive evaluations. The results show that VCMaker achieves a 20.5%–32.8% higher
detection accuracy, and 25.2%–45.7% lower energy consumption than several state-of-the-art schemes.
1. Introduction

With the advancement and popularity of Deep Learning in recent
years, we are capable of accurately detecting and classifying much more
complex objects in our surroundings by deploying fine-designed ma-
chine learning models, which make mobile Augmented Reality (AR) [1–
7] applications highly intelligent in the fields about entertainment,
tourism and education. Existing AR systems, such as ARKit, Microsoft
HoloLens [8] and the announced Magic Leap One [9], facilitate the
close interaction between humans and the virtual world.

However, only a small amount of AR applications are deployed
in mobile devices and developed based on deep learning framework
because (1) neural inference on mobile devices is significantly energy-
guzzling; (2) executing computation-intensive inferences in resource
limited mobile devices may not meet users’ performance require-
ments [10]. Hence, a promising approach is to offload the AR input,
including the video frames, to an nearby edge server which is equipped
with enough resources to support compute-intensive deep learning in-
ference. The edge server leverages state-of-the-art detecting algorithms
(i.e., YOLOv3 [11], YOLOv5 [12]) that adopt a detector strategy that
views the object detection problem as a regression problem and learns
the object boundary coordinates, as well as the corresponding class

∗ Corresponding author.
E-mail addresses: ningc@smail.nju.edu.cn (N. Chen), sheng@nju.edu.cn (S. Zhang), siyiquan2021@gmail.com (S. Quan), marszer@foxmail.com (Z. Ma),

qzz@nju.edu.cn (Z. Qian), sanglu@nju.edu.cn (S. Lu).

probability. Nonetheless, offloading object detection tasks to an edge
server is never trivial due to the stringent requirements on detection
accuracy and end-to-end latency, which largely depend on the video
configuration for transmission and detection.

The choice of configuration directly affects the transmission latency,
detection accuracy and energy consumption. Specifically, we take the
fps and resolution selection as an example to elaborate the impacts of
AR video configuration on these metrics. When faced with a terrible
network, AR videos with expensive configurations (i.e., with high fps
and resolution) are expected to cause unpredictable latency of data
transmission and object detection, which may significantly reduce the
detection accuracy due to the changes in user’s view–the frame loca-
tions where the object was originally detected may no longer match the
current location of the object. In addition, an expensive configuration
may lead to excessive energy consumption. How to efficiently choose
the optimal configuration is the key problem we intend to solve.

However, for a video analytics pipeline in an AR system, it is never
trivial to determine the best video configuration because it varies over
time at a timescale of minutes or even seconds, which is mainly a result
of (1) the fluctuation of network bandwidth; and (2) the time-varying
moving speeds of target objects. We may choose a cheap configuration
vailable online 14 October 2021
389-1286/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2021.108513
Received 28 June 2021; Received in revised form 22 September 2021; Accepted 24
 September 2021

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:ningc@smail.nju.edu.cn
mailto:sheng@nju.edu.cn
mailto:siyiquan2021@gmail.com
mailto:marszer@foxmail.com
mailto:qzz@nju.edu.cn
mailto:sanglu@nju.edu.cn
https://doi.org/10.1016/j.comnet.2021.108513
https://doi.org/10.1016/j.comnet.2021.108513
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2021.108513&domain=pdf

Computer Networks 200 (2021) 108513N. Chen et al.

w
v
8
c
i
b

l
l
w
b

when the network is degraded, and enhance the configuration if the
network condition is improving.m For instance in the traffic tracking
scenario, we may use a low frame rate (e.g., 3 fps instead of 30 fps)
if cars are moving slowly (i.e., at a traffic stop). However, assigning a
low frame rate to count the number of cars will significantly hurt the
accuracy because large number of fast-moving cars are not captured
successfully. Hence, we have to frequently adjust the configuration of
video pipeline to improve detection latency and energy consumption
while achieving the desired accuracy. It is unrealistic to test all possible
configurations in a given period.

Unfortunately, using traditional model-based techniques such as
Bayesian optimization [13], multi-armed bandits [14], or optimal ex-
periment design [15] to get the best configurations policy at the
granularity of seconds is time consuming. Indeed, these techniques
typically assume a near stationary environment (i.e., with stable band-
width and same type of videos), where it is beneficial to profiles only
once upfront or infrequently. Our proposed scenario, however, is non-
stationary. For example, tracking vehicles when they move quickly
requires a much higher frame rate to capture all the objects than they
move slowly, but the time at which each possible condition occurs may
vary by minutes, or even seconds.

In this paper, instead of relying on detailed analytical performance
modeling, we adopt a black-box approach to get adaptive configuration
for video streaming transmission in live Augment Reality. Motivated
by recent achievements of deep reinforcement learning (DRL) [16–
18] in video streaming [19], and job scheduling [20], we propose
the learning-based VCMaker, an intelligent content-aware decider for
adaptive video configuration selection, which starts with no prior
knowledge, and learns the best configuration decisions through con-
tinuous reinforcement based on the reward signals that indicate the
key metrics from previous decisions. VCMaker uses a neural network to
map ‘‘raw’’ observations (e.g., a combination of estimated bandwidth,
captured velocity as well as historical configurations) to the config-
uration decision. VCMaker incorporates diverse observations into the
configuration space in a scalable way. In our scenario, VCMaker max-
imizes the accumulative discounted reward rather, hence a temporary
better configuration may not benefit the following configurations. In
particular, VCMaker leverages the state-of-the-art A3C (asynchronous
advantage actor–critic network) [17] model to train its policy network.
Having trained the convergent model, VCMaker is capable of making
efficient configuration decisions for video streaming transmission in
real AR scenarios.

In addition, we propose several extra techniques to advance VC-
Maker. We adopt Dynamic RoI Encoding technique, which set different
bitrates based on the Regions of Interest (RoIs) detected in the last
frame. We need to decide the frame resolutions both inside and outside
the RoIs during each encoding period. Besides, on the local AR device,
we adopt a lightweight and fast object detection approach based on the
extracted motion vector from the current frame as well as the cached
detection result of previous frames to adaptively adjust the bounding
box on the current frame. We summarize our major contributions of
this work as follows:

• We quantify accuracy, latency, and energy requirements in an
end-to-end AR system. Besides, we identify several key factors
that affect the video configuration, such as the time-varying band-
width, the time-shifted AR scenes, and the conflicted latency–
accuracy–energy tradeoff. To our best knowledge, it has not
been revealed in the existing works to take the video content
into consideration for streaming transmission in live augmented
reality.

• We present VCMaker, an intelligent content-aware encoding sys-
tem that learns a smart configuration policy from past experi-
ences. We use A3C algorithm to train VCMaker, which views
the observed state (i.e., estimated bandwidth, captured velocity,
et al.) as input, and output the policy (i.e., the probability dis-
tribution of all configurations). Based on this policy, VCMaker is
2

likely to select a best configuration. e
• We implement a prototype of VCMaker based on commodity
hardware (e.g., Jetson TX2 and edge server with RTX2080 Ti
GPUs), and evaluate its performance using diverse types of AR
videos. We find VCMaker rivals or outperforms these algorithms
by improving the average detection accuracy by 20.5%–32.8%,
and reducing the energy consumption by 25.2%–45.7%.

The remainder of this paper is organized as follows. Section 2
describes the observations and challenges. Section 3 presents the system
architecture. Section 4 details our learning-based framework VCMaker.
Section 5 shows the implementation and evaluation of VCMaker. We re-
view some related works in Section 6, while we provide the conclusion
in Section 7.

2. Observations and challenges

Proceeding from the AR requirements, we expound some vital ob-
servations that motivate us to design adaptive configurations for AR
video streaming, and point several primary challenges that we have to
address.

2.1. Insights on the environment

We analyze some key factors including the network bandwidth
and video content that affect the video configuration, and do some
preliminary works to demonstrate them.

2.1.1. Fluctuation in network bandwidth
Most AR applications are deployed in mobile devices and commu-

nicate with edge server over cellular networks such as LTE, which is
likely to experience bandwidth fluctuation [21]. To fit the variable
bandwidth, rather than a fixed configuration (i.e., fps and resolution),
VCMaker aims to adaptively select the ideal configuration for transmis-
sion and object detection. We collect two ATT-LTE network bandwidth
traces from the Mahimahi [22] project and depict them as Fig. 1
shows. These traces represent the time-varying capacity of U.S. cellular
networks as experienced by a mobile user. Each line gives a timestamp
in milliseconds (from the beginning of the trace) and represents an
opportunity for one 1500-byte packet to be drained from the bottleneck
queue and cross the link. If more than one MTU-sized packet can be
transmitted in a particular millisecond, the same timestamp is repeated
on multiple lines. Based on the download and upload traces, we had the
following observations:

⊳ Periods with either extremely low or high bandwidths are uncommon
even the throughput is volatile. We show the bandwidths in a period as
Fig. 1(a), and we find only 14.6% of the time, the upload bandwidth is
smaller than 2 or larger than 5 Mbps. Similarly, it occurs only 14.8%
for the download bandwidth, which indicates the extreme bandwidth
can hardly impact the configuration decision;

⊳ Most of the slots share the similar bandwidth distribution. In other
ords, the bandwidth of the next slot is closely related to the average
alue of the past several slots. As Fig. 1(b) shows, in LTE uplink, 76.3%,
9.2%, and 80.1% of the slots have less than 20% bandwidth variation
ompared to the previous one, three, and six slots, respectively, which
mplies that there is only a slight fluctuation in consecutive slots. The
andwidth in LTE downlink has similar laws.

The above observations suggest that the bandwidth fluctuates in a
imited range (e.g., [0,10] in Fig. 1) in a given time scale, but varies
ess (e.g., [0,5]) in a much small interval (e.g., from 350 to 360),
hich provides a promising approach to estimate the future bandwidth
ased on past values without future network information. Then, this

stimation can benefit the configuration selection.

Computer Networks 200 (2021) 108513N. Chen et al.
Fig. 1. Bandwidth fluctuation over time. (a) The uplink and downlink bandwidth. (b) The 𝑌 -axis denotes the fraction of slots, in which the bandwidth is within [80%, 120%] of
the average bandwidth of the past 1 to 5 slots.
2.1.2. Time-shifted viewpoint-moving speed
In real AR scenarios, the user’s viewpoint follows with the target

objects, which may not always keep still. In general, the target objects
move with a time-shifted speed. In such cases, it is unwise to fix the
video configuration for transmission and detection. For instance, if we
select a low fps while the target objects move at a high velocity, the
locations (i.e., bounding boxes) of target objects detected in the last
frame may no longer match the current locations of the same objects,
which may cause a deteriorated accuracy. Similarly, choosing a high fps
for the AR videos with low-speed targets may incur extra transmission
and detection cost, but gain little improvement in accuracy. As Fig. 2(a)
shows, if we fix the configuration, then it seems that the detecting
accuracy decreases with the increase of the moving velocity of the
target object. Hence, the selected fps is expected to fit the viewpoint-
moving velocity. In addition, if we view the AR experience through
the perspective of the users, what they care about is the regions with
potential objects of interest (e.g., Regions of Interest).

2.2. Latency–accuracy–energy tradeoff

The mobile devices offload the AR input (i.e., the sampled images)
to the edge server for object detection, and the majority latency results
from the data transmission and image inference. As stated before, the
expensive configuration (i.e., a high resolution and fps) promises to gain
a gratifying accuracy, but causes an unpredictable data transmission
latency, and increases the energy consumption. Users may show various
weights of preference on accuracy, latency and energy. We conducted
an experiment to measure the impact on detecting accuracy and total
latency resulting from the video configuration. We connected a Nvidia
Jetson TX2 to an edge server equipped with RTX2080 Ti GPU through
WiFi-2.4 GHz, and streamed video with diverse configurations from
the Jetson to the edge server for inference, and used Python power
monitor library to collect the energy information. As the upper half part
of Fig. 2(b) shows, when the bandwidth is sufficient, the high detection
accuracy is greatly beneficial from an expensive configuration, e.g., a
high resolution and fps. However, as the lower half part of Fig. 2(b)
shows, when facing a terrible network, the expensive configuration
may decrease the accuracy due to the long transmission and detect-
ing latency. Besides, selecting an expensive configuration may cause
energy-guzzling. Intuitively, there exists an implicit nonlinear correla-
tion among these metrics. An efficient configuration decider is expected
to identify the nonlinearity.

2.3. Excessive energy consumption of AR applications

Compared to running compute-intensive deep learning inferences
3

locally on a mobile device, an edge assisted approach promises to
extend the battery life of a device. However, it still requires huge energy
consumption for multiple processes such as screen rendering, image
conversion, and data transmission. For example, the results from an AR
testbed in [23] shows that if continuously transmitting the latest videos
captured from a camera to a nearby edge server for object detection, a
3000 mAh battery of a mobile device (i.e., smartphone) is likely to be
exhausted within about 2.3 h, and over 60% of the energy is consumed
by the pre-process. Therefore, the energy efficiency impends AR clients
to gain a better performance. It may make sense by decreasing the
video configurations at the cost of degrading the detection accuracy.
Hence, a fine-designed configuration is crucial to the edge assisted
AR application. In this paper, the configuration of playback AR video
is user-defined, while the configuration of videos for transmission
and detection is adaptively decided by VCMaker, hence we only take
the energy consumption for data transmission into consideration, and
ignore the cost of object detection in an edge server.

Achieving adaptive configuration for AR video streaming is never
trivial and it faces several great challenges. We summarize them as
follows: (1) We lack future bandwidth and moving velocities of target
objects; (2) We have to tradeoff the each resulting metric (i.e., latency,
accuracy and energy); (3) How to reduce the energy consumption and
extend the battery life is necessary.

3. System architecture

To resolve these challenges listed in Section 2, we propose a system
named VCMaker to obtain high detection accuracy with an acceptable
overhead in the energy and latency. It learns to adaptively choose the
best configuration from historical experience. In this section, we first
introduce the workflow of VCMaker, and then propose two advanced
mechanisms.

3.1. Workflow of VCMaker

Fig. 3 illustrates the system architecture of our proposed VCMaker,
and we mark the key steps with numbers. At a high level, a general
AR system contains the AR client (i.e., an AR headset or a smartphone)
and the powerful edge server.

In the AR client, the camera captures the real time frames, and fills
them into the image buffer. Then, two parallel steps utilize the buffered
images for transmission and motion vector extraction, respectively.
Before each transmission period, VCMaker will select a configuration
for the video encoder (step 1), which then pulls the cached detection
results of the last frame (step 3) and leverages the RoI encoding
mechanism to encode the video with selected configuration (step 2).
Meanwhile, the local device incorporates the cached detecting results
of the last frame into the extracted motion vector of the current frame

Computer Networks 200 (2021) 108513N. Chen et al.
Fig. 2. Factors affecting the detecting accuracy. (a) The impact of velocity on the detecting latency; (b) the upper and lower half show the variety of accuracy under sufficient
and insufficient bandwidth respectively.
Fig. 3. System architecture. VCMaker selects the best configuration that matches current state, uploads the encoded video to the edge server for object detection, and stores the
results for motion vector-based object detection.
to achieve fast and accurate detecting (step 4). The edge server with
powerful detection algorithms such as YOLOv3, SSD or fast-RNN is
developed to process received image frames with Convolution Neural
Network (CNN) and send the detection results back to the AR client.
The client allocates an additional memory to store the results.

3.2. Dynamic RoI encoding

During the playback of AR video, users may show interests only
in several objects, but ignore the surroundings. Therefore, it makes
sense to identify the regions with potential objects of interest, which
we will refer to as regions of interest (RoIs). Intuitively, this region
is likely to adopt near-lossless compression method to maintain high
quality while lossier compression method for the background or non-
RoI area. Hence, we adopt Dynamic RoI Encoding technique to reduce
the data transmission latency while keeping a satisfied object detection
accuracy. In this paper, Dynamic RoI Encoding uses higher degrees
of compression in the parts that contain less objects of interest and
maintains high quality within RoIs, which largely reduces the scale of
encoded frame.

Note that in VCMaker, the term RoI is applied both in video com-
pression and object detection. In the field of video compression, RoIs
are the areas that contain more potential objects inside the frames
and will be encoded with a high bitrate. While for object detection
applications, RoIs are the output bounding boxes of the region proposal
network. Therefore, we can exploit this nature and combine them
together. We advance the dynamic RoI encoding technique that takes
the result (i.e., internal RoI) generated from object detection CNNs as
the RoI in the encoding process. Specifically, the image encoder applies
the output RoI of the last processed frame using CNNs to encode the
next frame. Based on the similarity between two frames captured in
a short moment, it is likely to accommodates a degree of motion by
slightly extending each RoI by one macro-block [24].
4

3.3. Motion vector-based object detection

Based on the motion vector extracted from the encoded frame and
the cached object detection result of the last frame, the Motion Vector-
Based Object Detection technique could estimate the object detection
result (i.e., bounding box) of the current frame. Motion vectors are
widely used in main encoding format (e.g., H.264 and H.265) to
represent the pixels offset among frames in order to get a higher
compression rate. A large number of commodity mobile devices deploy
specific hardware to advance video encoding and obtain the motion
vectors quickly. In the camera side, once a new frame is captured,
VCMaker will pass this frame to the Dynamic RoI Encoding session. The
video encoder takes the frame which corresponds to the last detection
result in the cache as its reference frame to do inter-frame compression.
Then, VCMaker will extract all motion vectors of the encoded frame. To
track each target object in the current frame, VCMaker first gets their
bounding boxes in the last uploaded frame, then compute the mean
of each target object with its all motion vectors in the bounding box,
and use them to shift the former position to the current position in the
current frame.

We apply the above two mechanisms to advance the AR experience.
VCMaker conducts the configuration decision process for RoI encoding,
and the performance of motion vector-based object detection largely
relies on the cached detection results of the last frame, which is
affected by the video configuration as well. Hence, VCMaker plays an
essential role in the AR system. We focus on designing an efficient
configuration decider, which learns the configuration policy from the
current environment including the network bandwidth usage, energy
consumption of data transmission, and the feedback accuracy. For
instance, if the energy consumption exceeds the budget, it may select
a cheaper configuration (i.e., a low resolution and fps). However, a low
configuration may degrade the detection accuracy. Thus how to assign

Computer Networks 200 (2021) 108513N. Chen et al.

w
f
t
a

t
t
b
d
t
e

e

4

r
d
t
d

t
p

an adaptive configuration is essential to the user’s QoE. In the next
section, we will show the detailed learning method of VCMaker.

4. Learning-based algorithm design

In this section, we will introduce the detailed design of VCMaker.
Considering that the VCMaker dynamically adjusts the configuration
through the feedback performance of the past configurations, which is
viewed as a learning process, we model it as a learning-based frame-
work. We first illustrate the basic learning mechanism, and present
the formal definition of our DRL framework of VCMaker. Then, we
elaborate on the detailed training methodology

4.1. Basic learning mechanism

Without future information, learning-based algorithm learns an ef-
fective policy largely from the historical experience. Specifically for
deep reinforcement learning (DRL), it continuously interacts with the
environment and adjusts the policy based on the feedback resulting
reward. The environment is a highly abstract that integrates the sur-
rounding information, but its agent can observe only a small part of
the environment, which is referred to as the state. To simplify the
description, we divide the total time into multiple time slots of equal
length. At each time slot 𝑡, the RL-agent observes a state 𝑠𝑡 and chooses
an action 𝑎𝑡 based on a specific policy 𝜋. When the action is done, the
agent will receive an instant reward 𝑟𝑡 and transit to the next state
𝑠𝑡+1. Through constant interactions with the environment until done,
the RL-agent is expected to obtain a high accumulative reward.

4.2. DRL framework

Considering that we can hardly gain the accurate future information
of the environment and the state transition probability, we propose the
model-free DRL-based VCMaker to adaptively generate configurations
for the transmission and object detection. The detailed designs are
shown in Fig. 4.

4.2.1. Action space
VCMaker adaptively chooses a configuration (i.e., the fps and reso-

lution) for transmission and detection, hence the components of config-
uration make up the action. In addition, we introduce the dynamic RoI
encoding mechanism to advance the transmission. Therefore, we couple
three elements to form the action space, i.e., 𝑎𝑡 = (𝑓𝑝𝑠𝑡, 𝑟𝑒𝑠𝑖𝑛𝑡 , 𝑟𝑒𝑠

𝑜𝑢𝑡
𝑡),

where 𝑟𝑒𝑠𝑖𝑛𝑡 and 𝑟𝑒𝑠𝑜𝑢𝑡𝑡 are the selected resolutions inside and outside the
RoIs, respectively. For a newly received state 𝑠, the DRL-agent selects an
action 𝑎 based on the policy 𝜋𝜃(𝑠, 𝑎), which is defined as the probability
distribution over the action space, and then gets an instant reward. The
policy 𝜋𝜃(𝑠, 𝑎) is the output of policy network, whose parameter is set to
𝜃.

4.2.2. State space
In fact, the state is the available observation of RL-agent (i.e., the

encoder in this paper to make configuration decisions) from the en-
vironment. Obviously, it is impossible for the RL-agent to gain the
whole information of the environment. Hence to approaches the role
of the God with comprehensive future knowledge, the RL-agent has
to learning from historical experience continuously. In such case, an
exhaustive definition of state is vital to the model training. In our
scenario, we combine four elements as follows to form the state:

⊳ Historical 𝑘 decisions
{

𝑎𝑡−𝑖|1 ≤ 𝑖 ≤ 𝑘 − 1
}

. We divide the whole
time scale into many time slots of equal length. In slot 𝑡, we assume
that the encoder encodes the frames with 𝑓𝑝𝑠𝑡, 𝑟𝑒𝑠𝑖𝑛𝑡 , and 𝑟𝑒𝑠𝑜𝑢𝑡𝑡 . It is
common that the environment seems not to arise huge changes in two
consecutive time slots, thus the previous configuration is able to guide
the video encoding for next slot. We denote the number of referenced
5

configurations used in VCMaker by 𝑘, which depends on video content, a
the feedback performance and network status. For instance, if the
camera is a capturing a racing game, it makes no sense to set a large k,
thus we set 𝑘 to 1. While when tracking a slow-moving object, a large
k is expected. In practice, it is never trivial to choose an optimal 𝑘,
because even a near static camera can capture both slightly changeable
videos (e.g., in midnight) and dynamic ones (e.g., rush hours). The
scheduling of 𝑘 is left as our future work, and incorporating it into
VCMaker can elevate VCMaker significantly.

⊳ Estimated bandwidth 𝐵(𝑡+1)
𝑒𝑠𝑡 . The encoder aims to select the opti-

mal configuration (i.e., resolution and fps) that best match the available
network bandwidth, yet lacks the prior knowledge of future bandwidth.
As stated before, the bandwidth varies in a limited range during slot
𝑡, and adopting more past bandwidths can obtain a more accurate
bandwidth estimation of next slot. Thus in this paper, we take the
weighted bandwidth of past 𝑘 slots as the estimated bandwidth 𝐵(𝑡+1)

𝑒𝑠𝑡
of slot 𝑡 + 1,

𝐵(𝑡+1)
𝑒𝑠𝑡 =

𝑡
∑

𝑖=𝑡−𝑘+1
𝜔𝑖𝐵𝑖, (1)

where 𝜔𝑖 < 𝜔𝑗 if 𝑖 < 𝑗, and ∑

𝜔𝑖 = 1. In Section 5, we set these weights
to emulate exponential moving average.

⊳ Average velocity 𝑣𝑡. It is known to us that VCMaker should assign
a high f ps when capturing fast-moving objects and a low 𝑓𝑝𝑠 for
slow-moving object. Otherwise, the locations (i.e., bounding boxes)
of target objects detected in the last frame may no longer match the
current locations of the same objects, which may cause a deteriorated
accuracy. Assume the target objects set is =

{

𝑧1, 𝑧2,… , 𝑧𝑛
}

, and the
previous configuration is

(

𝑓𝑝𝑠𝑡, 𝑟𝑒𝑠𝑖𝑛𝑡 , 𝑟𝑒𝑠
𝑜𝑢𝑡
𝑡
)

. The video frames are of-
floaded to the nearby edge server for object detecting using the YOLOv3
algorithm, which predicts the positions of potential objects, namely
Bounding Box Prediction. For each frame 𝑓 in slot 𝑡, and 𝑖 ∈ , suppose
that the feedback Bounding Box Prediction set is (𝑥𝑓𝑖 , 𝑦

𝑓
𝑖 , 𝑤

𝑓
𝑖 , ℎ

𝑓
𝑖 , 𝑐

𝑓
𝑖),

which contains the center coordinates of 𝑥-axis and 𝑦-axis (𝑥𝑓𝑖 , 𝑦
𝑓
𝑖), box

height and width (𝑤𝑓
𝑖 , ℎ

𝑓
𝑖), and class 𝑐𝑓𝑖 . Considering the target object

moves regularly, we use Manhattan distance [25] rather than Euclidean
distance to calculate the distance the object moves in one slot. Thus the
velocity 𝑣𝑡 is defined as the average distance of all objects at slot 𝑡, i.e.,

𝑣𝑡 =
1
||

∑

𝑧𝑖∈

[

|

|

|

𝑥𝑓𝑝𝑠𝑡𝑖 − 𝑥1𝑖
|

|

|

+ |

|

|

𝑦𝑓𝑝𝑠𝑡𝑖 − 𝑦1𝑖
|

|

|

]

, (2)

here (𝑥1𝑖 , 𝑦
1
𝑖) represents the center coordinate of target object 𝑧𝑖 in the

irst frame at slot 𝑡. We find that some objects may disappear during
his slot; and then, we set its location in the frame it does not appear
t that slot to be the farthest corner among all four corners.
⊳ Feature map of the latest frame. It is known that a convolu-

ion neural network is used to simulate the specific characteristics in
he visual pathway, of which color shades and the shape edges are
eneficial to make efficient video configuration. Diverse filters are
esigned to mine best knowledge from every perspective. We provide
he tuned filters for convolution and pooling in our implementation and
valuation section.

To sum up, in this paper we combine the historical decisions,
stimated bandwidth, and the velocity to form the state space.

.2.3. Reward
In our system, VCMaker is likely to get an instant reward 𝑟𝑡 when

eceiving 𝑎𝑡 to state 𝑠𝑡. In real AR scenarios, mobile users emphasize
etecting accuracy, total latency and energy consumption, thus these
hree metrics make up of reward. Suppose that 𝑎𝑡 = (𝑓𝑝𝑠𝑡, 𝑟𝑒𝑠𝑖𝑛𝑡 , 𝑟𝑒𝑠

𝑜𝑢𝑡
𝑡)

uring slot 𝑡.
⊳ Latency. As mentioned before, when offloading the detection tasks

o the more powerful edge servers, the image encoding and transfer
rocess add significant latency. Long latency may reduce the detection

ccuracy and further degrade the user’s QoE. Hence, we take it as a

Computer Networks 200 (2021) 108513N. Chen et al.

𝑐

Fig. 4. Design details. The actor–critic networks take the observations as input, and output the policy distribution and Q-value.
component of the tuned reward. We model the end-to-end latency make
a normalization during slot 𝑡 as follows,

𝑑𝑡 =
𝑓𝑝𝑠𝑡
∑

𝑓=1

𝑑𝑓𝑒2𝑒
𝑓𝑝𝑠𝑡

=
𝑓𝑝𝑠𝑡
∑

𝑓=1

𝑑𝑓𝑠𝑡𝑟𝑒𝑎𝑚 + 𝑑𝑓𝑖𝑛𝑓𝑒𝑟 + 𝑑𝑓𝑏𝑎𝑐𝑘
𝑓𝑝𝑠𝑡

, (3)

in which the 𝑑𝑓𝑒2𝑒 is the end-to-end latency of frame 𝑓 , which is
determined by three main components: (1) 𝑑𝑓𝑠𝑡𝑟𝑒𝑎𝑚 is the time to stream
frame 𝑓 from the AR device to the edge server; (2) 𝑑𝑓𝑖𝑛𝑓𝑒𝑟 represents
the time to run the object detection inference on frame 𝑓 on the edge
server; (3) 𝑑𝑓𝑏𝑎𝑐𝑘 indicates the time to transmit the detection results back
to the AR device. We use the average latency metric 𝑑𝑡 to represent the
latency of current configuration.

⊳ Detecting Accuracy. Based on the cached inference result of last
frame, the AR device adopts the Motion Vector technique to estimate
the object detection result (i.e., bounding box) of current frame. To
evaluate the detection accuracy,we first obtain the ground truth of
each frame in an offline manner, then calculate the IoU (the standard
detection metric used in the object detection task [26]) of each detected
bounding box and its ground truth as the accuracy of this detection. In
addition, we define the percentage of detected bounding boxes with
less than 0.75 IoU as false detection rate. Suppose that the raw video
is captured by the AR device with frame rate 𝑓𝑝𝑠𝑡 at slot 𝑡, then we
calculate the false detection rate 𝑓𝑑𝑟𝑡 as

𝑓𝑑𝑟𝑡 =
|

|

|

{

𝑓𝑖|𝐼𝑜𝑈𝑖 ≤ 0.75, 1 ≤ 𝑖 ≤ 𝑓𝑝𝑠𝑡
}

|

|

|

𝑓𝑝𝑠𝑡
, (4)

where 𝐼𝑜𝑈𝑖 indicate the IoU of frame 𝑓𝑖.
⊳ Energy Consumption. Performing an AR application is energy-

guzzling, which is mainly caused by the camera sampling, frame ren-
dering and data transmission. In fact, the energy consumptions about
camera sampling and frame rendering are up to the display configura-
tion chosen by users, and thus only the data transmission step depends
on the configuration decided by our proposed VCMaker. Hence we only
take this part of energy consumption into consideration, and denote the
energy consumption of data transmission during slot 𝑡 by 𝑒𝑡.

As users may show diverse preferences in these three components,
hence we define the final reward 𝑟𝑡 of once configuration decision at
slot 𝑡 by a weighted sum of these three vital components,

𝑟𝑡 = −𝛼1(𝑑𝑡 − 𝑑) + 𝛼2(𝑓𝑑𝑟𝑡 − ̄𝑓𝑑𝑟) + 𝛼3(𝑒𝑡 − 𝑒), (5)

where 𝛼1, 𝛼2 and 𝛼3 represent the weight factors to indicate the prefer-
ence on latency, accuracy and energy consumption. It is a quite general
and widely used definition as it models varying user preferences on
multiple contributing factors. In the final implementation, to mitigate
the influence by diverse fluctuation ranges of these metrics, we add 𝑑,
̄ and �̄�, which are set to the corresponding average of delay, average
detecting accuracy and average energy consumption respectively. We
measure them with substantial empirical video traces.
6

4.3. Training methodology of VCMaker

As stated before, the sophisticated state has multiple dimensions
and each dimension has lots of possible values, though the action
(e.g. configuration) space is bounded, there still have infinite (𝑠𝑡, 𝑎𝑡)
pairs. We leverage the policy gradient based method whose policy 𝜋
is represented by a neural network, and we refer the parameter of
this neural network to as the policy parameter 𝜃. Hence, the policy
(i.e., the output of policy network) is represented by 𝜋

(

𝑎𝑡|𝑠𝑡; 𝜃
)

→ [0, 1],
which indicates the probability distribution of taking each action at
state 𝑠𝑡. DRL aims to maximize the accumulated discounted reward
𝐽 (𝜃)=𝐄

[

∑𝑡0+| |

𝑡=𝑡0
𝛾 𝑡𝑟𝑡

]

through training a best policy mapping a state to
each action, where 𝛾∈(0, 1] is the discount coefficient of future reward.

In this paper, our proposed VCMaker takes good use of the A3C al-
gorithm consisting of the Actor–Critic networks that continually trained
with policy gradient method, which calculates the gradient of the ac-
cumulated reward obtained by following current trained policy. We
highlight the key steps of the training processes. Firstly, to update
the Policy (e.g., Actor) Network parameters in slot 𝑡, we calculate the
gradient of 𝐽 (𝜃) with respect to 𝜃 as [27]:

∇𝜃𝐽 (𝜃) = E𝜋𝜃

[

∑

𝑡∈
∇𝜃 log

(

𝜋𝜃
(

𝑠𝑡, 𝑎𝑡
))

𝐴𝜋𝜃
(

𝑠𝑡, 𝑎𝑡
)

]

, (6)

where 𝐴𝜋𝜃
(

𝑠𝑡, 𝑎𝑡
)

represents the advantage function that shows the
deviation between the expected accumulative discounted reward when
choosing 𝑎𝑡 at state 𝑠𝑡 under policy 𝜋𝜃 and the expected reward for all
actions at state 𝑠𝑡 derived from policy 𝜋𝜃 . In fact, the advantage function
indicates how much better a current specific selected action performs
compared to the ‘‘average action" selected under current policy. Hence,
the goal of advantage function is to reinforce the actions with posi-
tive and big advantage value 𝐴𝜋𝜃 (𝑠, 𝑎), and degrade the actions with
negative and small advantage value 𝐴𝜋𝜃 (𝑠, 𝑎).

Rather than use 𝐴𝜋𝜃 (𝑠, 𝑎) directly, the agent of VCMaker extracts a
trajectory of video configuration decisions and calculates the empiri-
cally advantage 𝐴

(

𝑠𝑡, 𝑎𝑡
)

as the unbiased estimated 𝐴𝜋𝜃
(

𝑠𝑡, 𝑎𝑡
)

. Hence
the update method of Policy (e.g., Actor) network parameter 𝜃 follows

𝜃 ← 𝜃 + 𝛼
∑

𝑡∈
∇𝜃 log𝜋𝜃

(

𝑠𝑡, 𝑎𝑡
)

𝐴
(

𝑠𝑡, 𝑎𝑡
)

, (7)

where 𝛼 is the learning rate. Behind the update law, we learn that
the gradient direction ∇𝜃 log𝜋𝜃

(

𝑠𝑡, 𝑎𝑡
)

indicates the way how to adjust
parameter 𝜃 to enhance 𝜋𝜃

(

𝑠𝑡, 𝑎𝑡
)

. In Eq. (7), 𝜃 is updated along the
gradient descent direction. Note that the step size during training is
decided by the advantage value 𝐴𝜋𝜃

(

𝑠𝑡, 𝑎𝑡
)

.
As stated before, each update is to reinforce actions to obtain better

feedbacks based on the advantage value 𝐴
(

𝑠𝑡, 𝑎𝑡
)

. Specifically, to obtain
𝐴
(

𝑠𝑡, 𝑎𝑡
)

, we also need to calculate the estimated value function 𝑣𝜋𝜃 (𝑠)
(i.e., the total expected reward following the policy 𝜋𝜃). As Fig. 4 shows,
to accelerate the computing, a critic network is used to estimate 𝑣𝜋𝜃 𝑠
()

Computer Networks 200 (2021) 108513N. Chen et al.

𝜃

o

r
i
e
t
e
v
c
h
a
b
V

5

n
o
s
t
a
(
t
c

from current observed rewards. Based on the Temporal Difference [28]
method, the critic network parameter 𝜃𝑣 follows

𝑣←𝜃𝑣−𝛼′
∑

𝑡
∇𝜃𝑣

(

𝑟𝑡+𝛾𝑉 𝜋𝜃
(

𝑠𝑡+1; 𝜃𝑣
)

−𝑉 𝜋𝜃
(

𝑠𝑡; 𝜃𝑣
))2 , (8)

where 𝑉 𝜋𝜃
(

𝑠𝑡; 𝜃𝑣
)

represents the estimated 𝑣𝜋𝜃
(

𝑠𝑡
)

that is generated by
the critic network. For a specific experience (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1),1 we calculate
the advantage value 𝐴

(

𝑠𝑡, 𝑎𝑡
)

as 𝑟𝑡 + 𝛾𝑉 𝜋𝜃
(

𝑠𝑡+1; 𝜃𝑣
)

− 𝑉 𝜋𝜃
(

𝑠𝑡; 𝜃𝑣
)

. Note
that the role of critic network is only to evaluate the policy of actor
network rather than train the actor network directly. In our proposed
scenarios, only the Actor (i.e., Policy) Network is used for making real
time video configuration decision.

To further balance well of exploration and utilization to avoid
falling into suboptimal solution, an entropy regularization [17] term
is added to encourage exploration to discover better policies during
training, which significantly makes the agent converge to a better
policy. Given this term, we modify Eq. (7) as

𝜃←𝜃+𝛼
∑

𝑡
∇𝜃 log𝜋𝜃

(

𝑠𝑡, 𝑎𝑡
)

𝐴
(

𝑠𝑡, 𝑎𝑡
)

+𝛽∇𝜃𝐻
(

𝜋𝜃
(

⋅|𝑠𝑡
))

, (9)

where 𝐻(⋅) represents the policy entropy which push 𝜃 to the direction
with higher entropy to encourage exploration, and 𝛽 is entropy weight
that indicates the importance of this entropy regularization term, which
is set to a large value in the beginning to find the best actions, and
decreases over time to allow VCMaker to have more opportunities to
utilize the best actions.

Considering there have infinite pairs of (𝑠𝑡, 𝑎𝑡), it is inefficient to
train VCMaker with single agent. Hence a parallel approach is applied
to enhance exploration and speed up training. We set n threads (i.e. RL
agents) simultaneously with diverse environment settings (e.g., differ-
ent types of AR videos and diverse network traces), and thus each
agents will experience different states and transitions, thereby avoiding
the correlation. During training, each agent continuously collects the
generated samples (i.e., tuple

{

𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1
}

), and computes the policy
gradient and perform a gradient descent method following the law
Eqs. (8) and (9), independently. Once a local model is convergent, the
central agent will pull the actor parameters of this model. When every
agent has finished the local training, the central agent will integrates
the parameters, and generates a global actor network. Finally, the
central agent pushes the global model to each agent for next new
training episode until the global actor network is convergent. Having
trained a convergent actor–critic network, we can select a efficient
action based on the output of policy network (e.g., action probability
distribution).

5. Implementation and evaluation

In this section, we implement the VCMaker, and evaluate its per-
formance in term of detection accuracy, processing latency and energy
consumption. We first give the prototype implementation of VCMaker.
Next, we list several state-of-the-art comparing schemes. Finally, we
show and analyze the experimental results through numerous real AR
videos. Our final results answer the following questions:

Question #1: How to identify the convergence of VCMaker? We
track the policy entropy and accumulative discounted reward through
1000 training episodes, and discover that the former (resp. later) factor
gradually decreases (resp. increases) and converges to a nonzero value.

Question #2: How does VCMaker perform compared to existing
carefully-tuned heuristics? We find that VCMaker achieves a 20.5%–
32.8% higher detection accuracy, and 25.2%–45.7% lower energy.

Question #3: How does VCMaker’s learning generality when ap-
plied in other types of AR videos or other types of bandwidth traces?
We find that VCMaker is capable of maintaining a good performance
in other scenarios where new network conditions and new videos are
added.

1 The RL-agent takes action 𝑎𝑡 for state 𝑠𝑡 in the beginning of slot 𝑡, then
btains instant reward 𝑟 , and transits to next state 𝑠 .
7

𝑡 𝑡+1
Table 1
Actor–Critic network design of VCMaker.

Types Actor network Critic network

Input layer 3 × 1D-CNN+VGG16+2 3 × 1D-CNN+VGG16+2
Hidden layer 256 × 256 × 256 256 × 256 × 256
Output layer |𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑝𝑎𝑐𝑒| 1

5.1. Prototype implementation

5.1.1. Hardware setup
As Fig. 5 shows, we use a mobile development board Nvidia Jetson

TX2 as the mobile AR device, which connects a Hikvision camera
as the Magic Leap One AR glass. We emulate an edge cloud with a
server (PowerEdge R740) equipped with two NVIDIA GeForce RTX
2080 Ti GPUs. Both the Jetson board and the edge server run an Ubuntu
16.04 OS, and connect to a TP-Link AC1200 router through a WiFi
connection.

5.1.2. Training setup
We deploy YOLOv3 detecting algorithm in the edge server, imple-

ment VCMaker using libraries on Pytorch [29] and train with the A3C
algorithm. VCMaker maintains the Actor and Critic networks, which
share the same parameters in the input and hidden layer, and output
the probability distribution of each action and the Q-value respectively.
Corresponding designs of the network structure are listed in Table 1.

We train the actor–critic networks in a parallel method with mul-
tiple workers, each of which calculates gradients locally and indepen-
dently, and then pushes its gradient to central worker for aggregation
synchronously and pulls the global parameters. We adopt the Adam
optimizer to run gradient descent, with fixed learning rate 0.0001,
mini-batch size of 32 samples per worker, entropy weight 𝛽 = 0.01, and
eward discount factor 𝛾 = 0.9. We first show VCMaker’s convergence
n Fig. 6. A larger policy entropy is initially set to perform an exhaustive
xploration, but gradually tends to a smaller value with the increase of
raining episodes, i.e., the policy network is convergent, and VCMaker
mphasizes utilization in terms of actions. We find that in the time-
arying scenarios, the entropy is not likely to be 0 in order to keep
ompatible with the newly states. Concurrent with this increase, there
as been a spiral rise in the accumulative discounted reward. Due to
random policy is adopted in the initial episodes, VCMaker performs

adly in terms of stability. However, through an efficient exploration,
CMaker receives a satisfied and steady accumulative reward.

.2. Comparing schemes

To improve VCMaker’s feasibility, we utilize several advanced tech-
iques as follows: (1) We use sparse optical flow [30] to track the
bjects appeared in the first and last frame at the same slot, con-
idering that many objects belong to the same class; (2) We extract
he complex feature map of the last frame at each slot with the
dvanced VGG16 [31]; (3) We obtain numerous training experiences
𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in an offline manner, which significantly accelerates the
raining. To further analyze and evaluate VCMaker’s performance, we
ompare it to the four approaches:

• The baseline solution (Baseline): the mobile clients transmit the
raw videos to the edge server, and apply the returned latest
detecting results on the current frame.

• The baseline solution and the motion vector-based object detect-
ing (Baseline+MVOD): The mobile clients transmit the raw videos
to the edge server, and estimate the object detection result of the
current frame using the motion vector extracted from the encoded
video frames and the cached latest object detection result.

Computer Networks 200 (2021) 108513N. Chen et al.
Fig. 5. Hardware setup. We view the Nvidia Jetson TX2 as the mobile AR device.
Fig. 6. The entropy and accumulative reward.

• Bandwidth Based Adaptation (BBA). For state 𝑠𝑡, the encoder
first finds out all possible combinations of fps and resolution
that match the estimated bandwidth 𝐵𝑡

𝑒𝑠𝑡, i.e.,
{

(𝑟𝑒𝑠𝑖𝑛, 𝑟𝑒𝑠𝑜𝑢𝑡,
𝑓𝑝𝑠)|𝑟𝑒𝑠×𝑓𝑝𝑠≈𝐵𝑡

𝑒𝑠𝑡
}

, 𝑟𝑒𝑠 = 𝑟𝑒𝑠𝑖𝑛 × 𝛽1 + 𝑟𝑒𝑠𝑜𝑢𝑡 × 𝛽2, where 𝛽1 and
𝛽2 is the area rate that is inside and outside the RoI of the last
frame. We randomly choose one configuration from this set.

5.3. Experimental results and analyses

Two types of live videos, captured by fixed street cameras for moni-
toring high-speed moving cars and on-board mobile cameras for track-
ing low-speed walking pedestrians respectively, are used to compare
VCMaker to other schemes. We refer to these two types of videos as
car videos and pedestrian videos, respectively. Obviously, the tracked
targets in the car videos have higher moving speeds than those in the
pedestrian videos. We set 200 episodes for these two types of video, and
each episode contains 200 slots (seconds), thus a total of 40 thousand
seconds.

In practice, VCMaker aims to maximize the long-term benefits,
hence the accumulative reward of a whole episode is the most im-
portant metric to evaluate the performance of VCMaker. We evaluate
this metrics under two types of network condition, e.g., stable network
(i.e., LTE) and unstable network (i.e., WiFi). We first consider the
former case. The upper half and lower half of Fig. 7(a) show how
VCMaker performs in car and pedestrian videos respectively. Lack-
ing the configuration selection process, the Baseline offloads the raw
videos to the edge server for detecting, which inevitably causes a long
transmission latency, and then decreases the detecting accuracy and
increases the energy consumption. Hence, it performs poorly. Base-
line+MVOD can largely improve the accuracy. BBA makes best use of
the bandwidth, which reduces the transmission latency, and further
8

enhances the detecting accuracy. The proposed VCMaker, taking net-
work condition, velocity and energy consumption into consideration,
outperforms the state-of-the-art BBA by roughly 45.6%. It is worth
mentioning that VCMaker performs better on videos with pedestrians
than those with cars. The reason behind this phenomenon is that the
videos with high-speed targets lead to a larger state space (i.e., a wider
range of velocity), which increases the training difficulty and finally
translates into the reward loss. Under an unstable network, as Fig. 7(b)
shows, the accumulative reward shares the same rules, but it has a
much more significant fluctuation, which is largely due to the time-
varying bandwidth. It causes an unpredictable transmission latency,
energy consumption and detection accuracy.

In addition, we are interested in how VCMaker performs in terms of
detecting accuracy, latency, and energy consumption comprehensively.
For accuracy, we define NAR (i.e., negative action rate) as the ratio
of slots, in which the accuracy is lower than the given threshold
(i.e., 0.7). The NAR for latency is the ratio of slots in which the total
latency including the uploading, detecting, and downloading latencies
is larger than the length of a time slot. Similarly, the NAR for energy
consumption is the ratio of slots, in which the consumed energy is 40%
higher than the max value Jetson TX2 can afford. We evaluate NAR
on these two types of videos across 500 episodes under both stable
and unstable networks. In the former case, we first calculate the aver-
age of accuracy, latency and energy. The results show that VCMaker
improves the detection accuracy by 20.5%–32.8%, and reduces the
energy consumption by 25.2%–45.7%. Specifically, we calculate the
average performance improvements in terms of total latency, detecting
accuracy and energy consumption. We find that VCMaker achieves a
32.8% higher detection accuracy compared to Baseline, and 20.5% to
the-state-of-the-art scheme BBA. What is more, VCMaker reduces 45.7%
energy consumption compared to Baseline, and 25.2% to BBA. Then,
we calculate the NARs for these metrics. As Fig. 8(a) shows under a
stable network, the proposed VCMaker, which has the lowest NARs on
both latency and accuracy, rivals other schemes, indicating that VC-
Maker can well mitigate the latency–accuracy–energy tradeoff. Baseline
shows high NARs in these three metrics, which results from offloading
raw videos with expensive configurations. When applied to the videos
with cars, as shown in Fig. 8(b), VCMaker still works well. Under an
unstable network, as Fig. 9(a) and Fig. 9(b) show, VCMaker still has a
gratified performance, which verifies its generalization ability.

VCMaker still has several potential limitations as follows: (1) it lacks
of a more representative state space; (2) the mechanism of estimating
bandwidth may not be accurate enough in all scenarios; and (3) the
deployment of VCMaker in practice is not trivial. In the follow-up work,
we plan to estimate future bandwidths using another neural network,
explore a more representative state space, train VCMaker with multiple
types of videos, and finally deploy it in real AR systems.

Computer Networks 200 (2021) 108513N. Chen et al.
Fig. 7. Performance comparison. (a) Accumulative reward using car videos (top half) and pedestrian videos (bottom half) under a stable network; and (b) Accumulative reward
using car videos (top half) and pedestrian videos (bottom half) under an unstable network.
Fig. 8. Three types of negative action rates using pedestrian and car videos under stable.
6. Related work

AR applications provides positive experiences for users, however
it is costly in terms of processing time, computing resources and
energy consumption. Therefore, it promises to upload the detecting
computation to cloud. Existing research aims to tradeoff delay and
accuracy through efficient offloading or adaptive AR configuration.
Liu et al. [32] decoupled the rendering pipeline from the offloading
pipeline, and applied a fast objecting tracking method in local de-
vice, without considering the AR video configuration selection. Wang
et al. [33] formulate the video summarization as an optimization
problem and develop an online greedy algorithm EVS to solve it.
Liu et al. [34] proposed an edge network orchestrator including two
components for server assignment and frame resolution selection in
order to mitigate the latency–accuracy tradeoff, but they did not
considering the impact of video content. Jiang et al. [35] proposed
Chameleon to adaptively pick the best video configuration for learning-
9

based video analytics pipelines, while ignoring the latency and energy.
Zhang et al. [36] proposed AWStream to get an optimal profile that
models accuracy-bandwidth tradeoff. Chen et al. In comparison, we
consider an adaptive video configuration through learning methods
from past empirical experiences to solve the above problems. Different
from the origin version Cuttlefish [37] we have implemented, VCMaker
has the following advantages: (1) VCMaker considers a fine-grained
resolution by introducing the define of Region of Interest (RoI); (2) VC-
Maker optimizes the definition of detecting accuracy; (3) VCMaker runs
lightweight motion vector based detection in local device to correct the
position of target objects, thereby improving the detecting accuracy; (4)
VCMaker takes the energy consumption into consideration.

Recent years, DRL has achieved amazing results in many different
fields. Mao et al. [19,20,38] applied DRL to adjust streaming rates
under unstable networks, scheduled Spark jobs with efficient resources
usage, and proposed open Park for researchers. Mirhoseini et al. [39]
adopted DRL to optimize the operator placement for a TensorFlow

computation graph in a single machine. In [40], Xu et al. used DRL

Computer Networks 200 (2021) 108513N. Chen et al.

S

Fig. 9. Three types of negative action rates using pedestrian and car videos under unstable networks.
to select routing path selection for network traffic. In [41–44], the
authors presented a multi-user MEC system, and established a A3C
based optimization framework to tackle resource allocation problem for
MEC. Zhang et al. [45] proposed ReLeS in Multipath TCP, which pro-
vides real-time packet scheduling. To our best knowledge, the proposed
VCMaker is the first to apply DRL to realize adaptive configuration for
edge-assisted AR applications.

7. Conclusion

In this paper, we design a system that enables high accuracy, low la-
tency and low energy consumption object detection for AR applications.
To achieve this, we propose VCMaker, which adaptively learns the
best video configuration for transmission and detection from historical
experience. We observe the variability of bandwidth, the time-shifted
moving velocity of target objects, and the similarity among adjacent
frames. All these factors affect the final encoded configuration. Hence,
VCMaker takes these factors as input and outputs the configuration
distribution, from which, VCMaker selects the best one. In addition,
we modify the RoI encoding and motion vector based object tracking to
advance VCMaker. We prototype an end-to-end system on commodity
hardware, and the results show that VCMaker achieves a 20.5%–32.8%
higher detection accuracy, and 25.2%–45.7% lower energy.

CRediT authorship contribution statement

Ning Chen: Conceptualization, Methodology, Software, Writing –
original draft. Sheng Zhang: Supervision, Writing – review & editing.
iyi Quan: Data curation, Software, Validation. Zhi Ma: Visualization.
Zhuzhong Qian: Investigation. Sanglu Lu: Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We thank the associate editor and anonymous reviewers. This work
was supported in part by NSFC (61872175, 61832008), and Collabo-
rative Innovation Center of Novel Software Technology and Industrial-
ization, China.
10
References

[1] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, MacIntyre, Recent
advances in augmented reality, IEEE CGA 21 (6) (2001) 34–47.

[2] G. Westerfield, A. Mitrovic, M. Billinghurst, Intelligent augmented reality training
for motherboard assembly, Springer IJAIED 25 (1) (2015) 157–172.

[3] M. Akçayır, G. Akçayır, Advantages and challenges associated with augmented
reality for education: A systematic review of the literature, Elsevier ERR 20
(2017) 1–11.

[4] A. Younis, B. Qiu, D. Pompili, Latency-aware hybrid edge cloud framework for
mobile augmented reality applications, in: IEEE SECON, 2020, pp. 1–9.

[5] P. Jain, J. Manweiler, R. Roy Choudhury, Overlay: Practical mobile augmented
reality, in: MobiSys, Association for Computing Machinery, 2015, pp. 331–344.

[6] P. Jain, J. Manweiler, R. Roy Choudhury, Low bandwidth offload for mobile AR,
in: CoNEXT, Association for Computing Machinery, 2016, pp. 237–251.

[7] Vuforia object recognitio, https://library.vuforia.com/articles/Training/Object-
Recognition/.

[8] Microsoft hololens, 2020, https://www.microsoft.com/en-us/hololens/.
[9] Magic leap one, 2020, https://www.magicleap.com/.

[10] L.N. Huynh, Y. Lee, R.K. Balan, Deepmon: Mobile gpu-based deep learning
framework for continuous vision applications, in: ACM MobiSys, 2017, pp.
82–95.

[11] J. Redmon, A. Farhadi, YOLOv3: An incremental improvement, CoRR (2018)
arXiv:1804.02767.

[12] yolov5, https://github.com/ultralytics/yolov5.
[13] O. Alipourfard, H.H. Liu, J. Chen, S. Venkataraman, M. Yu, M. Zhang, Cherryp-

ick: Adaptively unearthing the best cloud configurations for big data analytics,
in: USENIX NSDI, 2017, pp. 469–482.

[14] D.N. Hill, H. Nassif, Y. Liu, A. Iyer, S. Vishwanathan, An efficient bandit
algorithm for realtime multivariate optimization, in: ACM SIGKDD, 2017, pp.
1813–1821.

[15] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, M.J. Freedman,
Live video analytics at scale with approximation and delay-tolerance, in: USENIX
NSDI, 2017, pp. 377–392.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A.
Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, et al., Human-level control
through deep reinforcement learning, Nature 518 (7540) (2015) 529.

[17] V. Mnih, A.P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, K.
Kavukcuoglu, Asynchronous methods for deep reinforcement learning, in: ACM
ICML, 2016.

[18] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, D. Meger, Deep
reinforcement learning that matters, in: AAAI AAAI, 2018.

[19] H. Mao, R. Netravali, M. Alizadeh, Neural adaptive video streaming with
pensieve, in: ACM SIGCOMM, 2017.

[20] H. Mao, M. Schwarzkopf, S.B. Venkatakrishnan, Z. Meng, M. Alizadeh, Learning
scheduling algorithms for data processing clusters, in: ACM SIGCOMM, 2019.

[21] K. Winstein, A. Sivaraman, H. Balakrishnan, Stochastic forecasts achieve high
throughput and low delay over cellular networks, in: USENIX NDSI, 2013.

[22] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens, H.
Balakrishnan, Mahimahi: Accurate record-and-replay for HTTP, in: USENIX ATC,
2015.

http://refhub.elsevier.com/S1389-1286(21)00446-1/sb1
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb1
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb1
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb2
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb2
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb2
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb3
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb3
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb3
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb3
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb3
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb4
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb4
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb4
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb5
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb5
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb5
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb6
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb6
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb6
https://library.vuforia.com/articles/Training/Object-Recognition/
https://library.vuforia.com/articles/Training/Object-Recognition/
https://library.vuforia.com/articles/Training/Object-Recognition/
https://www.microsoft.com/en-us/hololens/
https://www.magicleap.com/
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb10
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb10
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb10
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb10
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb10
http://arxiv.org/abs/1804.02767
https://github.com/ultralytics/yolov5
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb13
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb13
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb13
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb13
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb13
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb14
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb14
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb14
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb14
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb14
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb15
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb15
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb15
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb15
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb15
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb16
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb16
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb16
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb16
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb16
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb17
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb17
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb17
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb17
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb17
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb18
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb18
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb18
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb19
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb19
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb19
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb20
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb20
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb20
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb21
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb21
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb21
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb22
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb22
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb22
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb22
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb22

Computer Networks 200 (2021) 108513N. Chen et al.
[23] H. Wang, J. Xie, User preference based energy-aware mobile AR system with
edge computing, in: IEEE INFOCOM, 2020.

[24] J. Chong, N. Satish, B. Catanzaro, K. Ravindran, K. Keutzer, Efficient paralleliza-
tion of h. 264 decoding with macro block level scheduling, in: ICME, IEEE, 2007,
pp. 1874–1877.

[25] S. Craw, Manhattan distance, Springer EMLDM (2017) 790–791.
[26] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, S. Savarese, Generalized

intersection over union: A metric and a loss for bounding box regression, in:
IEEE CVPR, 2019, pp. 658–666.

[27] R.S. Sutton, D.A. McAllester, S.P. Singh, Y. Mansour, Policy gradient methods
for reinforcement learning with function approximation, in: NIPS, 2000.

[28] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press,
2018.

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance
deep learning library, in: NIPS, 2019.

[30] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P.
Van Der Smagt, D. Cremers, T. Brox, Flownet: Learning optical flow with
convolutional networks, in: IEEE ICCV, 2015.

[31] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, 2014, arXiv preprint arXiv:1409.1556.

[32] L. Liu, H. Li, M. Gruteser, Edge assisted real-time object detection for mobile
augmented reality, in: ACM MobiCom, 2019.

[33] Y. Wang, Y. Dong, S. Guo, Y. Yang, X. Liao, Latency-aware adaptive video
summarization for mobile edge clouds, IEEE Trans. Multimed. 22 (5) (2020)
1193–1207.

[34] Q. Liu, S. Huang, J. Opadere, T. Han, An edge network orchestrator for mobile
augmented reality, in: IEEE INFOCOM, 2018.

[35] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, I. Stoica, Chameleon: scalable
adaptation of video analytics, in: ACM SIGCOMM, 2018.

[36] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, E.A. Lee, Awstream: Adaptive
wide-area streaming analytics, in: ACM SIGCOMM, 2018.

[37] N. Chen, S. Quan, S. Zhang, Z. Qian, Y. Jin, J. Wu, W. Li, S. Lu, Cuttlefish:
Neural configuration adaptation for video analysis in live augmented reality,
IEEE Trans. Parallel Distrib. Syst. 32 (4) (2021) 830–841.

[38] H. Mao, P. Negi, A. Narayan, H. Wang, J. Yang, H. Wang, R. Marcus, R. Addanki,
M. Khani, S. He, et al., Park: An open platform for learning augmented computer
systems, in: ICML Workshop, 2019.

[39] A. Mirhoseini, H. Pham, Q.V. Le, B. Steiner, R. Larsen, Y. Zhou, N. Kumar, M.
Norouzi, S. Bengio, J. Dean, Device placement optimization with reinforcement
learning, in: ACM ICML, 2017.

[40] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C.H. Liu, D. Yang, Experience-driven
networking: A deep reinforcement learning based approach, in: IEEE INFOCOM,
2018.

[41] J. Li, H. Gao, T. Lv, Y. Lu, Deep reinforcement learning based computation
offloading and resource allocation for MEC, in: IEEE WCNC, 2018.

[42] Y. He, F.R. Yu, N. Zhao, V.C. Leung, H. Yin, Software-defined networks
with mobile edge computing and caching for smart cities: A big data deep
reinforcement learning approach, IEEE CM 55 (12) (2017) 31–37.

[43] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, M. Bennis, Optimized computation
offloading performance in virtual edge computing systems via deep reinforcement
learning, IEEE IoT-J 6 (3) (2019) 4005–4018.

[44] C. Zhang, Z. Liu, B. Gu, K. Yamori, Y. Tanaka, A deep reinforcement learning
based approach for cost-and energy-aware multi-flow mobile data offloading,
IEEE TCOM E101.B (7) (2018) 1625–1634.

[45] H. Zhang, W. Li, S. Gao, X. Wang, B. Ye, Reles: A neural adaptive multipath
scheduler based on deep reinforcement learning, in: IEEE INFOCOM, 2019.

Ning Chen is currently working towards the PhD degree
in the Department of Computer Science and Technology,
Nanjing University, under the supervision of Prof. Sheng
Zhang. His research interests including edge computing,
deep reinforcement learning, and video streaming. To date,
he has published several papers, including those appeared
in ICPADS, SECON, TPDS, Computer Network, et al.
11
Sheng Zhang is an associate professor in the Department
of Computer Science and Technology, Nanjing University.
He is also a member of the State Key Lab. for Novel
Software Technology. He received the BS and PhD degrees
from Nanjing University in 2008 and 2014, respectively.
His research interests include cloud computing and edge
computing. To date, he has published more than 80 papers,
including those appeared in TMC, TON, TPDS, TC, MobiHoc,
ICDCS, and INFOCOM. He received the Best Paper Award of
IEEE ICCCN 2020 and the Best Paper Runner-Up Award of
IEEE MASS 2012. He is the recipient of the 2015 ACM China
Doctoral Dissertation Nomination Award. He is a member of
the IEEE and a senior member of the CCF.

Siyi Quan is an undergraduate student in the Department of
Computer Science and Technology, Nanjing University. He
is a member of the State Key Lab. for Novel Software Tech-
nology. His research interests include distributed computing
and edge computing. So far, he has finished SRTP and his
paper about blockchain has been accepted by CSCWD 2020.

Zhi Ma received the B.S. degree from the Department of
Computer Science and Technology, Nanjing University, in
2017. He is currently working towards the PhD degree
with the Department of Computer Science and Technology,
Nanjing University, under the supervision of Prof. Sheng
Zhang. His research interests include wireless charging and
edge computing.

Zhuzhong Qian is a professor at the Department of Com-
puter Science and Technology, Nanjing University. He is also
a member of the State Key Laboratory for Novel Software
Technology. He received his PhD. Degree in computer
science in 2007. Currently, his research interests include
cloud computing, distributed systems, and pervasive com-
puting. He is the chief member of several national research
projects on cloud computing and pervasive computing. He
has published more than 30 research papers in related fields.
He is a member of CCF and IEEE.

Sanglu Lu received her Ph.D. degree in computer sci-
ence from Nanjing University in 1997. She is currently
a professor in the Department of Computer Science and
Technology and the State Key Laboratory for Novel Soft-
ware Technology. Her research interests include distributed
computing, wireless networks, and pervasive computing.
She has published over 80 papers in referred journals and
conferences in the above areas. She is a member of CCF and
IEEE.

http://refhub.elsevier.com/S1389-1286(21)00446-1/sb23
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb23
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb23
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb24
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb24
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb24
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb24
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb24
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb25
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb26
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb26
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb26
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb26
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb26
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb27
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb27
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb27
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb28
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb28
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb28
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb29
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb29
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb29
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb29
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb29
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb30
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb30
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb30
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb30
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb30
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb32
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb32
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb32
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb33
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb33
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb33
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb33
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb33
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb34
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb34
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb34
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb35
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb35
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb35
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb36
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb36
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb36
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb37
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb37
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb37
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb37
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb37
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb39
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb39
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb39
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb39
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb39
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb40
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb40
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb40
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb40
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb40
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb41
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb41
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb41
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb42
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb42
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb42
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb42
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb42
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb43
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb43
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb43
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb43
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb43
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb44
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb44
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb44
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb44
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb44
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb45
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb45
http://refhub.elsevier.com/S1389-1286(21)00446-1/sb45

	VCMaker: Content-aware configuration adaptation for video streaming and analysis in live augmented reality
	Introduction
	Observations and challenges
	Insights on the environment
	Fluctuation in network bandwidth
	Time-shifted viewpoint-moving speed

	Latency–accuracy–energy tradeoff
	Excessive energy consumption of AR applications

	System architecture
	Workflow of VCMaker
	Dynamic RoI encoding
	Motion vector-based object detection

	Learning-based algorithm design
	Basic learning mechanism
	DRL framework
	Action space
	State space
	Reward

	Training methodology of VCMaker

	Implementation and evaluation
	Prototype implementation
	Hardware setup
	Training setup

	Comparing schemes
	Experimental results and analyses

	Related work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

