
ResMap: Exploiting Sparse Residual Feature Map
for Accelerating Cross-Edge Video Analytics

Ning Chen#, Shuai Zhang#, Sheng Zhang∗, Yuting Yan, Yu Chen, and Sanglu Lu
State Key Lab. for Novel Software Technology, Nanjing University, P.R. China

Email: {ningc, zhangshuai.cs, yuting.yan, DZ1933005}@smail.nju.edu.cn, {sheng, sanglu}@nju.edu.cn

Abstract— Deploying deep convolutional neural network
(CNN) to perform video analytics at edge poses a substantial
system challenge, as running CNN inference incurs a prohibitive
cost in computational resources. Model partitioning, as a promis-
ing approach, splits CNNs and distributes them to multiple edge
devices in closer proximity to each other for serial inferences,
however, it causes considerable cross-edge delay for transmitting
intermediate feature maps. To overcome this challenge, we
present ResMap, a new edge video analytics framework that
significantly improves the cross-edge transmission and flexibly
partitions the CNNs. Briefly, by exploiting the sparsity of the
intermediate raw or residual feature map, ResMap effectively
removes the redundant transmission, thereby decreasing the
cross-edge transmission delay. In addition, ResMap incorporates
an Online Data-Aware Scheduler to regularly update the CNN
partitioning scheme so as to adapt to the time-varying edge
runtime and video content. We have implemented ResMap fully
based on COTS hardware, and the experimental results show
that ResMap reduces the intermediate feature map volume by
14.93-46.12% and improves the average processing time by 17.43-
30.6% compared to other alternative designs.

Index Terms—edge video analytics, cross-edge CNN inference,
residual feature map, model partitioning

I. INTRODUCTION

Video analytics is becoming the modern solution to amounts
of critical scenarios. From augmented reality application [1],
[2] and mobile game, to autonomous vehicles, cognitive assis-
tance and surveillance systems, mobile edge devices capture
and analyze frames from video streams to derive helpful infor-
mation. The emerging mobile edge computing [3]–[5] enables
the edge infrastructures to be provisioned with considerable
computing resources, which can thus potentially support edge
video analytics using convolutional neural networks (CNNs).

Considering the prohibitive overhead in computation and
memory of running CNN inference purely on single device,
the model partition [12]–[19], which splits the model and dis-
tributes the slices to multiple edge device in closer proximity
to each other, makes full use of the resources of involved
devices to coherently complete the inference. Therefore, the
multi-edge collaborative method is widely applied to solve the
edge video analytics tasks. Fig. 1 illustrates such a system in a
multi-edge environment. An k-layer CNN model is partitioned
into three slices, which are scheduled to three edge devices
physically close. For an input frame, it sequentially runs the

These authors contribute to this work equally and are co-first authors.
∗ The corresponding author is Sheng Zhang (sheng@nju.edu.cn). This work

was supported in part by NSFC (61872175, 61832008), the Fundamental
Research Funds for the Central Universities (2022300297), and Collaborative
Innovation Center of Novel Software Technology and Industrialization.

Edge 1 Edge 2 Edge 3

Input Feature Map

Slice 1: 𝑳𝑳𝟎𝟎,𝑳𝑳𝒊𝒊 Slice 2: 𝑳𝑳𝐢𝐢+𝟏𝟏,𝑳𝑳𝒋𝒋 Slice 3: 𝑳𝑳𝒋𝒋+𝟏𝟏,𝑳𝑳𝒌𝒌

Feature Map Output

0 0 1 0 1
0 1 1 0 1

⋯
0 0 1 1 1

0 1 1 0 0
0 1 0 1

⋯
0 1 0 1 1

𝑻𝑻𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝟏𝟏 𝑻𝑻𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝑻𝑻𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝑻𝑻𝒕𝒕𝒊𝒊𝒕𝒕𝒊𝒊𝒕𝒕𝒊𝒊𝑻𝑻𝒕𝒕𝒊𝒊𝒕𝒕𝒊𝒊𝒕𝒕𝟏𝟏+ + + +𝑻𝑻 =

Completion

Edge 1 Edge 2 Edge 3

Input Feature Map

Slice 1: 𝑳𝑳𝟎𝟎,𝑳𝑳𝒊𝒊 Slice 2: 𝑳𝑳𝐢𝐢+𝟏𝟏,𝑳𝑳𝒋𝒋 Slice 3: 𝑳𝑳𝒋𝒋+𝟏𝟏,𝑳𝑳𝒌𝒌

Feature Map Output

0 0 1 0 1
0 1 1 0 1

⋯
0 0 1 1 1

0 1 1 0 0
0 1 0 1

⋯
0 1 0 1 1

Completion

𝑻𝑻 = 𝑻𝑻𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝟏𝟏 + 𝑻𝑻𝒕𝒕𝒊𝒊𝒕𝒕𝒊𝒊𝒕𝒕𝟏𝟏 + 𝑻𝑻𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 + 𝑻𝑻𝒕𝒕𝒊𝒊𝒕𝒕𝒊𝒊𝒕𝒕𝒊𝒊 + 𝑻𝑻𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊

Edge 1 Edge 2 Edge 3

Input Feature Map

Slice 1: 𝑳𝑳𝟎𝟎,𝑳𝑳𝒊𝒊

Feature Map Output

0 0 1 0 1
0 1 1 0 1

⋯
0 0 1 1 1

0 1 1 0 0
0 1 0 1

⋯
0 1 0 1 1

Slice 2: 𝑳𝑳𝐢𝐢+𝟏𝟏,𝑳𝑳𝒋𝒋 Slice 3: 𝑳𝑳𝒋𝒋+𝟏𝟏,𝑳𝑳𝒌𝒌

⋱ Cat: 𝒑𝒑𝟏𝟏
Dog: 𝒑𝒑𝒊𝒊
Rabbit: 𝒑𝒑𝒊𝒊

⋱

Fig. 1. Multi-edge collaborative video analytics system.

concrete CNN inferences at each edge device, transmits its
intermediate outcomes (i.e., feature map) to the next device,
and outputs the analytics results in the final device.

It is, however, non-trivial to optimally deploy such multi-
edge collaboration video analytics system, since it often re-
quires the cross-edge management of many factors, such as
the provisioning of edge resources, data transference among
devices, and the execution status of frames that are being pro-
cessed at each device. In fact, it faces two critical challenges:

First of all, the intermediate feature maps for successive
inference are commonly considerably large, and transferring
them to the next device probably incurs huge transmission
delay. In general, CNN layers are often arranged as a DAG
(directed acyclic graph), and one device has to delivers its
output to the next one for subsequent inference, thus causing
an extra transmission delay. This challenge escalates when the
model is complex, the number of involved edge devices is
large, or the inter-edge network connections are unreliable.

Second, both real-world edge platforms and video contents
are intrinsically dynamic and uncertain, and fixing the model
partitioning scheme possibly derives diminishing video ana-
lytics performance. In fact, for the newly arrival video, the
model partitioning scheme needs to be tuned before knowing
the dynamic status regarding the edge environment, and such
status include time-varying volumes of intermediate feature
map at each layer, as well as the completion times of frames
that are being processed. One may use the historical values
to predict the inputs and control the scheme based on such
estimations; however, it can hardly ensure the quality of this
predictor, compared to the offline optimum in hindsight.

Existing researches fall insufficient for addressing the afore-
mentioned challenges. Some [12]–[14] have considered the
effective model partitioning based on the devices’ computing
capability and inter-device bandwidth, but they do not optimize
the feature map transmission. Others [15]–[17] use adaptive

0 5 10
0.0

0.2

0.4

0.6

0.8

1.0
N

on
ze

ro
-r

at
e

42.86%

AlexNet

0 20
0.0

0.2

0.4

0.6

0.8

1.0

43.75%

VGG16

0

100

200

300

400

N
um

be
r o

f F
ra

m
es

0 100
CNN Layer Index

0.0

0.2

0.4

0.6

0.8

1.0

N
on

ze
ro

-r
at

e

22.5%

ResNet

0 100 200
CNN Layer Index

0.0

0.2

0.4

0.6

0.8

1.0

27.09%

GoogLeNet

0

100

200

300

400

N
um

be
r o

f F
ra

m
es

(a) Case for raw feature map

0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

N
on

ze
ro

-r
at

e

59.2%

AlexNet

0 20
0.0

0.2

0.4

0.6

0.8

1.0

64.62%

VGG16

0

100

200

300

400

N
um

be
r o

f F
ra

m
es

0 100
CNN Layer Index

0.0

0.2

0.4

0.6

0.8

1.0

N
on

ze
ro

-r
at

e

30.5%

ResNet

0 100 200
CNN Layer Index

0.0

0.2

0.4

0.6

0.8

1.0

32.54%

GoogLeNet

0

100

200

300

400

N
um

be
r o

f F
ra

m
es

(b) Case for residual feature map

0.0 0.2 0.4 0.6 0.8 1.0
Nonzero-rate Distribution

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

AlexNet
VGG16
GoogLeNet
ResNet

(c) CDF of raw feature map

0.0 0.2 0.4 0.6 0.8 1.0
Nonzero-rate Distribution

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

AlexNet
VGG16
GoogLeNet
ResNet

(d) CDF of residual feature map
Fig. 2. Sparsity of the raw and the residual feature map.

compression ratio or feature pruning techniques to reduce
the intermediate data volume, which probably results in a
decrease in analytics accuracy. Several researches [18], [19]
present the iterative alternating optimization to derive the
optimal partitioning scheme from the large solution space,
which incurs a considerable profiling delay. The rest [20]–[23]
studies the model partitioning in edge-cloud platform, but does
not investigate the edge-only collaborative inference.

In this paper, the following two observations motivate us
to overcome the above challenges: (1) the large intermediate
feature map of each layer, however, is commonly sparse (see
Section II); (2) The time-varying sparsity of each feature
map can be efficiently predicted (see Section IV-B), which
facilitates online model partitioning. Therefore, we carefully
design three functional modules to optimize both the cross-
edge feature map transmission and model partitioning:

Feature map sparse encoder. The intermediate feature
map, however, contains substantial useless or redundant values
(i.e., 0). Hence for each path of a feature map, we use the
nonzero-rate to measure the sparsity, and once the nonzero-
rate meets the given threshold, we adopt sparse encoding to
compress it. In addition, drawing from the fact that successive
frames show significant similarity, we obtain the potentially
sparser residual feature map by subtracting the feature map of
the last frame from that of current frame. At every transferring,
if the one that has a lower nonzero-rate and satisfies the
threshold from these two feature maps, we use sparse encoding
to compress it. Otherwise, we transmit the raw feature map.

Intermediate data predictor. The volume of each feature
map outputted by each CNN layer, which is of vital importance
for making efficient model partitioning scheme for the newly
arrival video, is however not available until the concrete
inferences have done. In this case, we turn to profile the
correlations between the known volume of raw or residual
frame and the unknown volumes of all the subsequent layers.
We experimentally show that for each type of layer, there
exists a functional relation (e.g., logistic for convolutional
layer and linear for ReLU and MaxPool layer). Thus, we
directly estimate the volume of each layer from the volume of
raw or residual frame and ensure the quality of this predictor.

Online data-aware scheduler (DAS). Based on the inter-
mediate data volume estimation of each layer, the online DAS
is proposed to advance completion time for the newly arrival
video by tuning the model partitioning scheme. To avoid the
buffer invalidation due to frequent scheme updates, DAS makes

decisions based on video chunk granularity, that is, the frames
in the same chunk share the same execution plan. In this case,
until the previous video chunk has been executed, the next
chunk is submitted to the pipeline system. DAS first simulates
the execution of the previous chunk and gather its completion
times at each stage, which are also the ready time for the next
chunk. Then, it runs the Data-Aware DP algorithm to derive
the scheme with an estimated earliest completion time, and
takes this as the latest partition strategy.

To this end, we present ResMap, a new edge video analytics
system that significantly enhances the intermediate feature
map transmission and model partitioning. Briefly, for the
newly arrival video chunk, ResMap first uses the Intermediate
Data Predictor to estimate the feature map volume produced
by each layer. Based on this estimation, ResMap incorporates
an online DAS to remake the model partitioning scheme. After
that, ResMap distributes each model slice to the involved edge
devices for concrete inference. Once one device has done the
inference, ResMap uses the Sparse Encoder to compress the
outputted feature map and transmits it to the next device for
running next model slice.

We have implemented ResMap and deployed it over three
4B Raspberry Pis. In addition, we have built 4 typical models
including AlexNet, VGG16, GoogLeNet, and ResNet in it. The
experimental results measured in VIRAT dataset [24] show
that ResMap reduces the intermediate feature map volume
by 14.93-46.12% and improves the average processing time
by 17.43-30.6% compared to other alternative designs. We
summarize our major contributions of this work as follows:
• Reduction for cross-edge data transmission. By exploiting

the sparsity of the raw or residual feature map, ResMap
largely reduces the transmission data volume.

• Optimization for model partitioning. By accurately predict-
ing the future intermediate volume of each layer through
online DAS, ResMap significantly improves the efficiency
of model partitioning.

• Improvement for resource utilization. Pipeline execution
enables to make full use of the edge devices resources such
as GPU, memory, and inter-device bandwidth.

II. MOTIVATIONS AND INSIGHTS

This section exhibits our motivations to propose ResMap.
As stated before, the cross-edge collaborative CNN inference
accelerates the video analytics, however, generating large
volume of intermediate feature map for subsequent inferences.

Video chunk

⋱

Worker NMaster

Intermediate
Data Predictor

CNNs

Data-Aware
Scheduler

State
Tracker

Worker 0

Encoder

ItgJob

Executor

Monitor

Device Info. Update

State Update

⋯
IFR Queue

⋯

⋯

ItgJob

Executor

Monitor

result

⋯
Nonzero

Rate Info. Pre-train

data
control

⋯

⋯

Video chunk

⋱ Sparse
Encoder

Intermediate
Data Predictor

Data-Aware
SchedulerCNNs

⋯
IFR Queue

State
Tracker

Offline training
Sparse

Encoder

ItgJob

Executor

Monitor
⋯

ItgJob

Executor

Monitor

Result

⋯

Device Info. Update
data
control

Update

Volume of
each layer

Master Worker 0 ⋯ Worker N

⋯

⋯

Fig. 3. The architecture of ResMap.

Directly delivering such raw feature map probably incurs
excessive delay. Hence we desire to improve the feature map
transmission by exploiting its structural information. Prelimi-
narily, we use the road video with a total of 400 frames from
VIRAT dataset [24] to acquire the intermediate feature maps
of four typical CNNs including AlexNet, VGG16, GoogLeNet,
and ResNet that consist of 14, 32, 173, 203 layers respectively.

Case for the raw feature maps. In general, several two-
dimensional matrixes make up a feature map. In many cases,
a feature map contains considerable duplicate values (e.g.,
0 in this paper). Hence an intuitive idea is to only transmit
the non-duplicate value, but fill back the feature map with
the duplicate value afterwards. Without loss of generality, we
use nonzero-rate to measure the sparsity for a given feature
map. We show the nonzero-rate of each frame at each layer
in the heat map Fig. 2(a), and a region with deeper color
indicates that more samples fall on it. It is clear that 42.86%
feature maps have a nonzero-rate lower than 0.5 for AlexNet,
and 43.75%, 22.5%, and 27.09% for VGG16, ResNet, and
GoogLeNet respectively. What’s more, we observe that for a
fixed layer, its feature maps show almost the same nonzero-
rate. For instance, feature maps generated by layer 2 (or 5,
8, 10, 12, 13) in AlexNet have highly similar nonzero-rates.
Other CNNs present the similar rules. We also depict the
nonzero-rate distribution in Fig. 2(c). Despite many sparse
samples, most of the feature maps (over 50% for AlexNet and
VGG16, and 70% for ResNet and GoogLeNet) present high
nonzero-rates. For these samples, we consider another case to
further lower their nonzero-rates.

Case for the residual feature maps. It’s common that the
successive frames captured by stationary camera present the
similar contents. For instance in a road surveillance video, it
shows few scene-changes in the background, and especially at
night there are almost no cars on the road. The adjacent frames
share abundant pixel values, thus probably producing the sim-
ilar feature maps. Specifically, we acquire the residual feature
map by subtracting the feature map of the last frame from that
of the current frame. Then we present the resulting nonzero-
rate in Fig. 2(b). Fortunately, 59.2% feature maps have a
nonzero-rate lower than 0.5 for AlexNet, and 64.62%, 30.5%,
and 32.54% for VGG16, ResNet, and GoogLeNet respectively.
Compared to the raw feature map, the nonzero rate distribution
of residual feature maps is much more decentralized. It is clear
that in Fig. 2(d) the residual feature map further improves the
sparsity of intermediate data.

To sum up, the intermediate raw or residual feature maps,
however, are commonly sparse, thus exploiting such sparsity

3 channels input Filter x4 Map x4

320,320,3 318,318,4

Fig. 4. Feature maps in CNN inference.

is promising to reduce the transmission volume. Specifically,
when an edge device runs the concrete inference for the
specified model partitions and outputs the feature map, it first
evaluates the sparsity of this raw or its residual feature map,
then if the one from these two feature maps has a lower
nonzero-rate and meets the threshold, it uses sparse encoding
to compress it and transmits it to the next device. Otherwise, it
delivers the raw feature map. In addition, once the next device
receives the residual feature map, it extracts the buffered result
of last frame and generates the raw feature map for inference.

III. RESMAP OVERVIEW

The goal of ResMap is to accelerate the cross-edge collab-
orative video analytics on multiple resource-constrained edge
devices by efficient CNNs partitioning and intermediate fea-
ture map reduction. Typical CNNs including AlexNet, VGG,
GoogLeNet, and ResNet have been built in ResMap, users are
capable of defining their own CNNs with the APIs provided
by ResMap. Fig. 3 presents the architecture of ResMap. There
are two roles for the involved devices, i.e., Master and Worker.
Briefly, the Master is responsible for model partitioning,
while each Worker executes the concrete inference tasks and
transmits the encoded feature map to the next Worker.

Master. On one hand, as the global coordinator, it involves a
State Tracker to continuously gather the runtime system status.
On the other hand, for the newly arrival video chunk, the
Intermediate Data Predictor estimates its feature map volume
at each CNN layer. Based on the above information, the Data-
Aware Scheduler, which is pre-trained in an offline manner,
makes effective partitioning scheme for the given model, and
generates an IFR file for each frame. Each initial IFR consists
of the layers index and the initial input for the first Worker.

Worker. Once it receives an IFR, the Merger decodes the
input, and regenerates the complete feature map. Then, the
Executor runs concrete inference for the layers specified in
the IFR and produces a new feature map. The Sparse Encoder
compresses this intermediate feature map based on its sparsity,
updates the IFR file and transfers it to the next Worker. The
successive Workers repeat these operations one by one, and
the final Worker directly outputs the analytics results. Each
Monitor persistently tracks the IFR status, collects the runtime
information, and feeds them back to the Master.

IV. RESMAP DESIGN

ResMap significantly reduces the intermediate feature map
volume by exploiting the Sparse Encoder, and periodically
tunes an effective model partitioning scheme that’s completely
adapted to the future knowledge, including the estimated data

map1 map2 map3

map1

map2

map3

map1

map2

map3

(3) PI

(1) HC

(2) VC

(a) Methods

0.00 0.25 0.50 0.75
Non-Zero Rate

2000

4000

En
co

di
ng

 T
im

e
(m

s)

PI
HC
VC

200 400
Number of Paths

1000

2000

3000
PI
HC
VC

200 400
Number of Rows

1000

2000
En

co
di

ng
 T

im
e

(m
s)

PI
HC
VC

200 400
Number of Columns

500

1000

1500
PI
HC
VC

(b) Encoding efficiency of three methods.
Fig. 5. Evaluations of three methods based on CSR.

volume of each layer from Transmission Predictor, and the
completion time of each runtime frame from State Tracker.
This section details the design of Sparse Encoder, Interme-
diate Data Predictor, and Data-Aware Scheduler. Finally, we
illustrate the workflow of cross-edge collaboration inference
based on the partitioning scheme.

A. Feature Map Sparse Encoder

For each frame to be analyzed, it goes through multiple
convolution and pooling operations, and produces a feature
map once it finishes a layer inference. Note that, given a
concrete model that specifies the number of filters and their
sizes for each layer, the shape of output feature map is also
determined. For instance in Fig. 4, feeding a frame with shape
320x320x3 to the convolution layer with 4 3x3x3 filters, it
outputs 4 maps with shape 318x381, which form the full
feature map. Hence, for any input, we can easily acquire
the feature map size of each layer. The widely used sparse
encoding methods for two-dimension (2D) matrix consists
of CSR (Compressed Sparse Row) and CSC (Compressed
Sparse Column) that compress the matrix by row and column
respectively. The width of captured videos is commonly larger
than the height, thus using the CSR approach probably benefits
more. Considering a feature map consists of several 2D maps,
we propose three methods to encode the multi-path feature
map as shown in Fig. 5(a):

• Horizontal or Vertical Combination (HC or VC). We
merge all the 2D maps horizontally or vertically, and run
CSR encoding to compress the aggregated 2D matrix.

• Path Independently (PI). We perform CSR encoding to
compress each 2D map and put the results together.

Fig. 5(b) illustrates the efficiencies of these three methods. It
is clear that no matter how we tune the number of paths, rows
and columns, PI outperforms other schemes in the encoding
time. Hence we employ PI method to encode the feature map.

B. Intermediate Data Predictor

Problem and goal. Unlike single-device inference, multi-
edge collaborative inference experiences a cross-edge feature
map transmission stage, and commonly the data volume is
substantially huge. Scheduling the layers with huge outputs to
the involved devices probably incurs a significant transmission
time, thereby largely increasing the average completion time.
The Sparse Encoder is proposed to reduce the feature map

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
1-th Conv Layer

Logistic Fit

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
4-th Conv Layer

Logistic Fit

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
7-th Conv Layer

Logistic Fit

Fig. 6. Relation between the first layer and Convolution layer in AlexNet.

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
2-th ReLU Layer

Linear Fit

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
5-th ReLU Layer

Linear Fit

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
8-th ReLU Layer

Linear Fit

Fig. 7. Relation between the first layer and ReLU layer in AlexNet.

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
3-th MaxPool Layer

Linear Fit

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
6-th MaxPool Layer

Linear Fit

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
13-th MaxPool Layer

Linear Fit

Fig. 8. Relation between the first layer and MaxPool layer in AlexNet. The
x-axis shows the nonzero-rate of output residual feature map Of,0−Of−1,0

of frame f and y-axis indicates the nonzero-rate of Of,l −Of−1,l.

volume to some extends, but the volume is still considerable
and varies with the sparsity measured by nonzero-rate. What’s
worse, for the newly arrival video chunk, we can hardly get
their nonzero-rates of each layer in advance until they have
executed the corresponding layers, and thus the intermediate
feature map volumes of each layer are also unavailable.

Method. In this case, we exploit a predictive approach to
estimate the nonzero-rate of each layer. Specifically, we first
present the sparsity estimation for each layer, and then derive
the intermediate data volume prediction.

1) Feature map sparsity prediction: To accurately estimate
the feature map volume, we first predict its sparsity. A CNNs
comprises multiple layers, which are organized as a DAG (
Directed Acyclic Graph), and a frame is processed at each
layer in the topological order of this DAG. We denote the
output feature map of frame f at layer l by Of,l. To simplify
the description, Of,0 indicates the raw input frame. Based on
Section II, we observe that both the raw feature map Of,l and
the residual feature map Of,l −Of−1,l are probably sparse.

Case for raw feature map. As Fig. 2(a) illustrates, for a
CNN layer, the resulting nonzero-rates for whatever inputs are
highly concentrated in a certain interval. Take AlexNet as an
example, its nonzero-rates in several layers (e.g., 2, 3 and 5)
are distributed narrowly around a specific value. Thus for each
layer of a given CNN, we directly use the average nonzero-rate
of the total samples as the sparsity estimation.

Case for residual feature map. As shown in Fig. 2(b),
for a specific layer, its nonzero-rates with different inputs are
distributed asunder. Hence, we make the sparsity estimation
for each frame. We detail the methodology as follows.

In general, receiving the input Of,0, we easily acquire
Of,0 − Of−1,0, while the residual outputs of the subsequent

𝑶𝑶𝟐𝟐,𝟎𝟎 − 𝑶𝑶𝟏𝟏,𝟎𝟎 1

2

3

4

5

6
𝒁𝒁𝟎𝟎

𝒁𝒁𝟏𝟏

𝒁𝒁𝟏𝟏

𝑶𝑶𝟐𝟐,𝟎𝟎 − 𝑶𝑶𝟏𝟏,𝟎𝟎 1

2

3

4

5

6

𝑶𝑶𝟐𝟐,𝟐𝟐 − 𝑶𝑶𝟏𝟏,𝟐𝟐

𝑶𝑶𝟐𝟐,𝟑𝟑 − 𝑶𝑶𝟏𝟏,𝟑𝟑

𝑶𝑶𝟐𝟐,𝟔𝟔 − 𝑶𝑶𝟏𝟏,𝟔𝟔
𝒛𝒛𝟎𝟎

𝒛𝒛𝟏𝟏

𝒛𝒛𝟏𝟏

𝒁𝒁𝟐𝟐

𝒁𝒁𝟑𝟑

𝒁𝒁𝟒𝟒

𝒁𝒁𝟓𝟓

𝒁𝒁𝟔𝟔

𝑶𝑶𝒊𝒊+𝟏𝟏,𝟎𝟎 − 𝑶𝑶𝒊𝒊,𝟎𝟎

1

2

3

4

5

6

𝒁𝒁𝟎𝟎

𝒁𝒁𝟏𝟏

𝒁𝒁𝟏𝟏

𝒁𝒁𝟐𝟐

𝒁𝒁𝟑𝟑

𝒁𝒁𝟒𝟒

𝒁𝒁𝟓𝟓

𝒁𝒁𝟔𝟔

𝑖𝑖

𝑖𝑖 + 1

Conv: Logistic

ReLU: Linear

MaxPool: Linear

𝒁𝒁𝟏𝟏
𝒁𝒁𝟐𝟐
⋯
𝒁𝒁𝑵𝑵

𝑫𝑫𝟏𝟏
𝑫𝑫𝟐𝟐
⋯
𝑫𝑫𝑵𝑵

frame
CSR

Fig. 9. Methodology of Intermediate Data Predictor.
layers (Of,1 −Of−1,1, Of,2 −Of−1,2, · · ·) are not generated
until the corresponding inferences are finished. To support the
online scheduling for the arrival frames, a promising method is
to estimate the sparsity of each layer in advance purely based
on the input Of,0−Of−1,0, and further obtain the approximate
transmission volume. Take the AlexNet as an example, we
show the relations between the subsequent layers and the first
layer in terms of nonzero-rate in Figs. 6, 7, and 8. The x-
axis shows the nonzero-rate of output residual feature map
Of,0−Of−1,0 of frame f and y-axis indicates the nonzero-rate
of Of,l − Of−1,l. For the Convolution layers, their nonzero-
rates are Logistic relationship with the nonzero-rate of the raw
frame or its residual frame. While there is an apparent positive
linear correlation for the ReLU and MaxPool layers.

We exploit these facts to effectively predict the nonzero-
rate for each layer. Specifically, for the Convolution layers,
we use a multi-layer perceptron (MLP) with a hidden layer
and take Logistic as the activation function, and for the ReLU
and MaxPool layers, we directly use a linear function to fit the
relation between the estimation and the input nonzero in the
first layer. As stated before, we employ CSR method to encode
the multi-path feature map using PI method, hence we predict
the nonzero-rate for each path. Besides these basic layers,
some complex CNNs probably comprise layers with multiple
direct predecessors such as the Inception layer in GoogLeNet
that splices the received feature maps. For these layers, we
first estimate the nonzero-rates of their predecessors, and use
the weighted sum of them to indicate their nonzero-rates.

2) Transmission volume estimation: Having obtained the
sparsity information, we are capable of calculating the data
volume of each layer. Suppose that for layer L, the HL ×
RL × CL feature map comprises HL paths, and each path
corresponds to a RL×CL 2D matrix. We denote by zh ∈ ZL

the nonzero-rate of path h. In CSR encoding, three arrays,
i.e., indptr, indices, and data, are established to store each 2D
matrix. Specifically, indptr maintains the number of nonzero
elements of each row, indices is to record the row index of each
nonzero element, and data stores all the nonzero elements. The
demanded lengths of these arrays are RL + 1, RLCLzh and
RLCLzh respectively. Hence the total number of elements DL

using CSR method is calculated as

DL=

HL∑
h=1

((2RLCLzh+RL+1) I(zh<δ)+RLCLI (zh≥δ)) , (1)

where δ is the threshold to measure the sparsity, I(·) is the
indicator function and it returns 1 if the condition holds, oth-
erwise it returns 0. To sum up, Fig. 9 shows the methodology
of intermediate feature map volume prediction for a CNN with
N layers. It first acquires the initial Z0 of Oi+1,0 − Oi,0,
then derives all the nonzero-rates of successive layers, finally
estimates the approximate volumes under CSR encoding.

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

Runtime Chunk 𝑃𝑃

Arrival Chunk 𝐺𝐺

⋯ 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

𝐺𝐺 𝐺𝐺 −1 ⋯ 𝐺𝐺0

𝑇𝑇 𝑓𝑓, 𝑠𝑠 𝐸𝐸 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, :

𝑂𝑂𝑔𝑔,𝑙𝑙 ,𝐷𝐷𝑔𝑔,𝑙𝑙 t𝑔𝑔,𝑤𝑤
𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚 & t𝑔𝑔,𝑤𝑤

𝑐𝑐𝑚𝑚𝑐𝑐𝑡𝑡Sparsity
Estimation

𝜏𝜏 𝐺𝐺 − 1,2𝑀𝑀 − 1

Dynamic
Programming

𝐵𝐵,𝐶𝐶,𝑈𝑈,𝜋𝜋

𝜋𝜋∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝜋𝜋min(𝛿𝛿𝜋𝜋)

Another 𝜋𝜋′ ∈ ∏ − 𝜋𝜋

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

Runtime Chunk 𝑃𝑃

Arrival Chunk 𝐺𝐺

⋯ 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

𝐺𝐺 𝐺𝐺 −1 ⋯ 𝐺𝐺0

𝑇𝑇 𝑓𝑓, 𝑠𝑠 𝐸𝐸 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, :

𝑂𝑂𝑔𝑔,𝑙𝑙 ,𝐷𝐷𝑔𝑔,𝑙𝑙 t𝑔𝑔,𝑤𝑤
𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚 & t𝑔𝑔,𝑤𝑤

𝑐𝑐𝑚𝑚𝑐𝑐𝑡𝑡CSR

Dynamic
Programming

𝐵𝐵,𝐶𝐶,𝑈𝑈

𝜋𝜋∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝜋𝜋min(𝛿𝛿𝜋𝜋)

Another π ∈ ∏

Ready Time

𝜋𝜋 ∈ ∏

Fig. 10. Workflow of Online Data-aware Scheduler (DAS).
TABLE I

SUMMARY OF NOTATIONS IN ALG. 1
Inputs Description
G The newly arrival video chunk

N,M The number of layers and Workers
P The frames that are being executed in the pipeline

T [f, s] ∈ T Completion time of completed stage s of frame f ∈ P
Oi,j ∈ O Raw feature map volume of frame i at layer j
Di,j ∈ D Residual feature map volume of frame i at layer j
bw ∈ B Bandwidth between Worker w and Worker w + 1
ui ∈ U Computation to run layer i
Ωw ∈ Ω The layers executed at Worker w
ci ∈ C Runtime GPU processing cycles of Worker i

Decisions Descriptions
pw The layer index in front of the w-th partitioning

C. Online Data-aware Scheduler

As stated before, once a Worker receives the residual feature
map Of,l −Of−1,l, it has to use the local buffered data (i.e.,
Of−1,l) to generate the complete input Of,l for inference.
In general, different partitioning scheme result in different
buffered contents, hence frequently changing the scheme (e.g.,
every frame an update) probably invalidates the buffered data
and seriously weakens the role of Sparse Encoder. In this
case, the proposed online Data-Aware Scheduler (DAS) tunes
the partitioning scheme at video chunk granularity. The goal of
DAS is to derive the optimal partitioning scheme that largely
advances the completion time for each arrival video chunk.

Alg. 1 illustrates the workflow of DAS and Tab. I summa-
rizes the notations of inputs and decisions for Alg. 1, where
O and D are derived from Intermediate Data Predictor, P ,
T , B, U , Ω, and C are gathered by the Monitor, and fed
back to DAS. In short, Alg. 1 goes through two steps, i.e.,
estimating the ready time (i.e., the time when the GPU and
inter-device connection are released and ready for G) (lines 1-
6) and profiling the optimal scheme with an earliest completion
time (i.e., the time when the last layer is finished) (lines 7-23).

Ready time estimation. There are mainly two types of
stages, i.e., cross-edge feature map transmission and on-device
inference. To analyze a frame using M Workers, it experiences
M−1 transmissions and M inferences, with a total of 2M−1
stages. Considering the buffered content varies with the video
chunk, the newly chunk G will not be executed until the
previous chunk is totally finished. Hence, the ready time for
chunk G is also the completion time of P . To estimate this
ready time, we first figure out the head fmin and tail fmax

frame in P , and the frames between these two frames have not
been finished. Considering the sequential and non-preemptive
processing in each stage, it is not until both the stage s of
frame f − 1 and stage s− 1 of frame f are finished, the stage
s of frame f starts to be executed. Based on this and the
execution status T , we iteratively obtain the completion time
of fmax, i.e., T [fmax, :], which is also the ready time for G.

Optimal scheme profiling. To derive the optimal scheme

Algorithm 1 Data-Aware Dynamic Programming Algorithm
Input: G, O, D, P , T , Ω, B, C, U , N , M
Output: Partitioning scheme (p1, · · · , pM−1)

1: fmin, fmax ← the head and tail frame in P
2: for frame index f = fmin to fmax do
3: for f ’s first unfinished stage s to 2m− 1 do
4: E[f, s]← max{E[f − 1, s], E[f, s− 1]}+ T [f, s]

5: Denote the ready time of all stages by r← E [fmax, :]
6: Define the optimal scheme and its delay as π∗, δπ∗ ←∞
7: for all π∈{(p1,· · · ,pM−1)|0 <p1≤· · · pM−1 ≤ N} do
8: Worker 0→M−1execute layers (0, p1)→(pM−1, N)
9: Define the virtual buffer Ω′ ← Ω

10: ∀g ∈ G, calculate its inference and transmission delay
11: tcmpt

g,w ←
(∑pw+1

i=pw+1 ui

)
/cw, t

tran
g,w

12: for g = G0 to G|G|−1 do
13: for worker w = 0 to M − 1 do
14: if Dg−1,pw

∈ Ω′ then
15: ttrang,w ← (Dg,pw) /bw

16: else
17: ttrang,w ← (Og,pw

) /bw, Ω′
w ← {pw}

18: tg,s ← ttrang,s/2 if 2 | s else tcmpt
g,s/2+1

19: Define the estimated delay τ [g, s]
20: For G0, τ [G0, 0]← r0 + tG0,0

21: for s = 1 to 2M − 1 do
22: τ [G0, s]← max {rs, τ [G0, s− 1]}+ rG0,s

23: for g = G1 to G|G|−1 do
24: τ [g, 0]← τ [g − 1, 0] + tg,0

The finish time of G : δπ ← τ [|G| − 1, 2M − 1]
25: if δπ ≤ δπ∗ then
26: π∗ ← π

27: T,Ω← T
⋃
t,
{{

pπ
∗

1

}
, . . . ,

{
pπ

∗

M−1

}}
28: return π∗

π∗ ∈ Π = {(p1, p2, · · · , pM−1)} with the earliest completion
time δπ∗ , DAS runs two-stages profiling. Firstly, based on the
raw data volume O and estimations D, it directly calculates the
transmission delay ttrang,w and inference delay tcmpt

g,w for frame
g ∈ G in Worker w. Secondly, for a scheme π, based on the
ready time and estimated delay for each stage, DAS uses the
idea of Dynamic Programming to obtain the completion time
of frame g ∈ G at stage s, i.e., τ [g, s], and δπ of this chunk G
is the completion time the last stage 2M −1 of frame |G|−1,
i.e., τ [|G| − 1, 2M − 1]. We traverse each scheme π ∈ Π
and calculate its δπ . Finally, we derive the optimal π∗, which
has an earliest δπ∗ . Fig. 10 shows the workflow of Online
Data-aware Scheduler. When executing the arrival chunk, it
persistently updates the T and the executed layers set Ω at
each Worker for scheduling the next arrival video chunk.

D. Workflow of Cross-Edge Collaboration Inference

Since the online DAS has derived the optimal partitioning
scheme π∗ for the newly arrival video chunk with a length
of K, Worker 0, w(1 < w < M) and M − 1 execute the
layers (0, pπ

∗

1), (pπ
∗

w , pπ
∗

w +1) and (pπ
∗

M−1, N) respectively. For

Executor

𝑭𝑭𝒌𝒌−𝟏𝟏,𝟎𝟎 𝑭𝑭𝒌𝒌,𝟎𝟎

𝑭𝑭𝒌𝒌,𝟏𝟏𝑭𝑭𝒌𝒌−𝟏𝟏,𝟏𝟏

1

2

3

𝑭𝑭𝒌𝒌,𝟏𝟏 − 𝑭𝑭𝒌𝒌−𝟏𝟏,𝟏𝟏

𝑭𝑭𝒌𝒌−𝟏𝟏,𝟎𝟎 + 𝑸𝑸𝒌𝒌,𝟎𝟎𝟎𝟎,𝒑𝒑𝟏𝟏𝝅𝝅
∗

𝑸𝑸𝒌𝒌,𝟎𝟎

IFR-k

𝑭𝑭𝒌𝒌−𝟏𝟏,𝟏𝟏 𝑭𝑭𝒌𝒌,𝟏𝟏

𝑭𝑭𝒌𝒌,𝟐𝟐𝑭𝑭𝒌𝒌−𝟏𝟏,𝟐𝟐

1

2

3

𝑭𝑭𝒌𝒌,𝟐𝟐 − 𝑭𝑭𝒌𝒌−𝟏𝟏,𝟐𝟐

𝑭𝑭𝒌𝒌−𝟏𝟏,𝟏𝟏 + 𝑸𝑸𝒌𝒌,𝟏𝟏𝒑𝒑𝟏𝟏,𝒑𝒑𝟐𝟐𝝅𝝅
∗

𝑸𝑸𝒌𝒌,𝟏𝟏

IFR-k

𝑭𝑭𝒌𝒌−𝟏𝟏,𝑴𝑴−𝟏𝟏

𝑭𝑭𝒌𝒌,𝑴𝑴

1

2

𝑭𝑭𝒌𝒌−𝟏𝟏,𝑵𝑵−𝟏𝟏
+𝑸𝑸𝒌𝒌,𝑴𝑴−𝟏𝟏

𝒑𝒑𝑴𝑴−𝟏𝟏𝝅𝝅∗ ,𝑵𝑵

𝑸𝑸𝒌𝒌,𝑴𝑴−𝟏𝟏

IFR-k

…

1 Merger
2

3 Encoder
Residual
Raw

𝑭𝑭𝟎𝟎,𝟎𝟎

𝑭𝑭𝟎𝟎,𝟏𝟏

2

𝟎𝟎,𝒑𝒑𝟏𝟏𝝅𝝅
∗

𝑸𝑸𝟎𝟎,𝟎𝟎

IFR-0

𝒑𝒑𝟏𝟏,𝒑𝒑𝟐𝟐𝝅𝝅
∗

𝑸𝑸𝟎𝟎,𝟏𝟏

IFR-0
𝒑𝒑𝑴𝑴−𝟏𝟏𝝅𝝅∗ ,𝑵𝑵

𝑸𝑸𝟎𝟎,𝑴𝑴−𝟏𝟏

IFR-0

…

Input buffer
Worker 0 Worker 1 Worker 𝑴𝑴− 𝟏𝟏⋯

Output buffer

𝑭𝑭𝟎𝟎,𝟏𝟏

𝑭𝑭𝟎𝟎,𝟐𝟐

2

Input buffer

Output buffer
𝑭𝑭𝟎𝟎,𝑴𝑴

2

⋯ ⋯ ⋯
⋮

Frame 0

⋮Ex
ec

ut
io

n
pr

og
re

ss
 o

f t
he

 n
ew

ly
 a

rri
va

l c
hu

nk

Frame k

Frame K

Fig. 11. Workflow of cross-edge collaboration inference.

TABLE II
LINES OF CODE IN RESMAP IMPLEMENTATION.

Roles Component Lines of Code (LoC)
ResMap Master DAS, Predictor, Tracker 5,216 lines of Python
ResMap Worker Executor, Merger, Encoder 2,257 lines of Python

each frame in this chunk, the Master generates an initial IFR
(i.e., InFeRence) file, which indicates the layers to be executed
at Worker 0 and consists of the data of the raw or residual
frame compressed by Sparse Encoder. Fig. 11 illustrates the
workflow of cross-edge collaboration inference, where Qi,j

indicates the encoded data for Worker j of frame i, and Fi,j+1

represents the output raw feature map at Worker j.
For the header IFR-0, its data segment Q0,0 is the encoded

raw frame. When Worker 0 receives IFR-0, considering no
input buffer (i.e., the raw feature map of last frame generated at
the worker before), it directly takes Q0,0 as the input to execute
the concrete inference, and updates the input buffer with Q0,0.
Similarly, having no output buffer (i.e., the raw feature map
of last frame generated at this worker), the Sparse Encoder
directly updates Q0,0 in IFR-0 to Q0,1 with the compressed
F0,1 and updates the output buffer with F0,1. The subsequent
Workers repeat these operations until Worker M − 1 outputs
the final result F0,M .

For any IFR-k, 1 ≤ k ≤ K, its data segment Qk,0 consists
of the compressed raw or residual frame. Specifically, if Qk,0

is the residual data, the Merger in Worker 1 adds the buffered
input Fk−1,0 to this residual data Qk,0 to generate the complete
input Fk−1,0 + Qk,0. Otherwise, the raw data Qk,0 is also
the input for inference. Then, the input buffer is updated
with this new data, and the Executor runs concrete inference
and produces a new feature map Fk,1. After that, the output
buffer is also updated with Fk,1. Finally, the Sparse Encoder
measures the nonzero-rate of this new feature map or its
residual map, and selects the one with lower nonzero-rate to
update the data segment in IFR-k. The successive Workers do
the same procedures until Worker M − 1 gets the analytics
result Fk,M for frame k. Note that, all the IFRs share the
same inference plan (i.e., the layers executed at each Worker).

V. IMPLEMENTATION AND EVALUATION

ResMap focuses on accelerating the edge video analytics
by the coherent execution of Master and multiple Workers,

0 5 10 15 20
Time (s)

m→
→w0

w0

w0→
→w1

w1

w1→

En. & Tr.

De.
In.

En. & Tr.

De.

In.

Tr.

(a) Pipeline of AlexNet using LBS

0 5 10 15 20
Time (s)

m→
→w0

w0

w0→
→w1

w1

w1→

En. & Tr.

De.
In.

En. & Tr.

De.

In.

(b) Pipeline of AlexNet using DAS

0 50 100 150
Time (s)

m→
→w0

w0

w0→
→w1

w1

w1→

En. & Tr.

De.
In.

En. & Tr.

De.

In.

Tr.

(c) Pipeline of VGG16 using LBS

0 50 100 150
Time (s)

m→
→w0

w0

w0→
→w1

w1

w1→

En. & Tr.

De.
In.

En. & Tr.

De.

In.

Tr.

(d) Pipeline of VGG16 using DAS
Fig. 12. The pipelines of AlexNet and VGG16 using LBS and DAS scheduler respectively.

LBS-Road DAS-Road LBS-Parking DAS-Parking
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr
oc

es
si

ng
 T

im
e

(s
)

1.194

0.793

1.164

0.782

0.184

0.946

0.232

0.686

1.191

0.766

1.155

0.761

0.123

0.851

0.191

0.566

Master→Work 0
Inference in Work 0

Work 0→Work 1
Inference in Work 1

(a) Time distribution of AlexNet
LBS-Road DAS-Road LBS-Parking DAS-Parking

0

5

10

15

20

25

30

35

Pr
oc

es
si

ng
 T

im
e

(s
)

1.195

15.075

6.184

12.233

0.172

13.387

4.452

12.504

1.177

13.636

6.206

12.321

0.118

13.367

2.802

12.374

Master→Work 0
Inference in Work 0

Work 0→Work 1
Inference in Work 1

(b) Time distribution of VGG16
Fig. 13. Processing times in each stage of AlexNet and VGG16.

which are deployed on edge devices. We have implemented
both of them fully based on COTS hardware, and the deep
learning framework adopted in ResMap is PyTorch, one of
the most widely used framework. Table II show the lines of
code (LoC). This section presents the effectiveness of ResMap
in the inference acceleration and intermediate data reduction.

A. Experimental Setup

We use three 4B Raspberry Pi’s that are provisioned with
2GB memory, one is used as the Master, and the other two
devices are the Worker to execute the concrete inference. We
use TC tool to set the maximum transmission rate between
two devices to 4MB per second. For a comprehensive eval-
uation, we select four CNN models (i.e., AlexNet, VGG16,
GoogLeNet and ResNet) with diverse complexities, which
comprise 14, 32, 173, and 203 layers respectively. As for the
testing data, we use two categories of videos including the
road and parking videos from data set VIRAT [24]. These
two types of videos have a static background and dynamic
moving cars. Compared to the parking video, the road video
presents more dynamics. Two key evaluation metrics are listed
as follows:

• Feature map volume reduction in each layer. As stated
before, feature maps outputted by Convolutional, ReLU
and MaxPool layers present diverse nonzero-rates. Thus,
we explore the data reduction for each layer.

• Average inference acceleration. We also tune the maxi-
mum parallel pipelines and the length of video chunk to
test the improvements.

As for the baseline, we compare the Data-Aware Scheduler
(DAS) with the widely used Load-Balanced Scheduler (LBS)
in many researches [12]–[14], [18], [19] , which distributes
the total computations to the involved Workers based on the
their computation resources and the inter-device bandwidth,
and transmits the raw intermediate feature map to the next

Worker for subsequent inferences. It is usual that LBS uses a
fixed or slightly tuned scheme for the specific model.

B. Acceleration of Pipeline Execution

Since each stage (i.e., inference or transmission) consumes
independent resources that do not affect each other: CNN
inference utilizes GPUs or CPU resources of Worker, encoding
and decoding use the hardware encoder and decoder respec-
tively, and transmitting feature map consumes the bandwidth,
ResMap enables the feature map transmission and CNN infer-
ence to be effectively pipelined and executed parallel. Gantt
Fig. 12 illustrates the pipelines of BLS and DAS to run AlexNet
and VGG16 for road video. We use the same color to record
the executions of one frame from the Master m to the last
Worker w1. Both ′m →′ and ′w →′ indicate the stages of
encoding and transmission, which are separated by a vertical
line. ′ → w′ represents the decoding in Worker w, and ′w′

indicates the concrete CNN inference. For each frame to be
analyzed, it is firstly encoded and transmitted by the Master m
(i.e., ′m→′). Then, having received this frame, w0 decodes it
(′ → w′

0), runs CNN inference in it (′w′
0). When the inference

is finished, it encodes and delivers the output feature map to
w1 (′w0 →′). w1 repeats the above stages. Note that if one
frame is completed in w0, it will not be sent to w1.

As Fig. 12(a) shows, considering the same computing
powers of Worker w0 and w1, LBS schedules approximate
computations to them, thus causing similar inference times.
In addition, without using Sparse Encoding, LBS transmits
the same data volume for each frame, thus leading a same
transmission time. Though no Sparse Encoding makes the data
encode and decode faster, transmission critically hinders the
video analytics performance. On the contrary as Fig. 12(b)
shows, the proposed DAS utilizes the Sparsity of feature map
to flexibly partition the CNNs, thus significantly reducing
the intermediate data volume and advancing the completion
time. Though the Sparse Encoding brings extra overhead,
it largely benefits the transmission. Due to the dynamics
of video content over time, the volume of each encoded
data is also different. Specifically, DAS directly schedules
the entire CNN to w0 for one-shot inference, which further
advances the completion time. On the whole, DAS reduces
the transmission delay by 68.41% and the average completion
time by 30.6%. Similarly, we evaluate the effectiveness of
ResMap to run VGG16, the results are illustrated in Fig. 12(c)
and Fig. 12(d). LBS costs much more time to transmit the
intermediate feature map compared to DAS. What’s more,

0 2 4 6 8 10 12
Index of CNN Layer

0

1

2

3

4

5

D
at

a
V

ol
um

e
(M

B
)

No Sparse Encoding
Using Sparse Encoding
Volume Reduction

(a) Data volume of AlexNet

0 4 8 12 16 20 24 28 32
Index of CNN Layer

0

20

40

60

80

D
at

a
V

ol
um

e
(M

B
)

No Sparse Encoding
Using Sparse Encoding
Volume Reduction

(b) Data volume of VGG16

0 20 40 60 80 100 120 140 160 180
Index of CNN Layer

0

5

10

15

20

D
at

a
V

ol
um

e
(M

B
)

No Sparse Encoding
Using Sparse Encoding
Volume Reduction

(c) Data volume of ResNet

0 25 50 75 100 125 150 175 200
Index of CNN Layer

0

5

10

15

20

D
at

a
V

ol
um

e
(M

B
)

No Sparse Encoding
Using Sparse Encoding
Volume Reduction

(d) Data volume of GoogLeNet
Fig. 14. feature map reductions of AlexNet, VGG16, ResNet, GoogLeNet respectively using ResMap in road video.

LBS fixes the scheduling strategy to keep the approximate
computation at each Worker, hence to improve the completion
time, the transmission delay becomes the bottleneck. On the
contrary, DAS tunes its partition scheme to make the finish
time of each Worker as close as possible. The maximum finish
time among all the Workers is the minimum completion time.
To sum up, DAS enables to reduce the transmission delay by
53.58% and the average completion time by 17.43%.

We also explore the resulting delay in each stage for single
frame as Fig. 13 shows. To run AlexNet using road video, LBS
takes almost the same times (i.e., 0.793 and 0.782 seconds) to
perform CNN inference in Worker 0 and Worker 1, while DAS
costs 0.26 seconds more in Worker 0 than that in Worker 1. In
addition, LBS spends a total of 2.358 seconds on transmission,
however, DAS costs only 0.416 seconds, thus reducing the
transmission time by 82.35%. As a result, it improves the
total overhead of each frame by 47.93%. Compared to the
road video, the parking video presents less changes, thus
causing sparser feature map, hence the transmission time of
DAS in parking video (0.416) is lower than that in road video
(0.314). Fig. 13(b) shows the results when running VGG16.
For VGG16, its inference time accounts for the bulk of the
total time (i.e., 27.308 to 34.687 seconds). For single frame,
DAS makes little progresses in inference acceleration, but it
largely reduces the transmission time from 7.379 to 4.624
seconds (i.e., a 37.3% improvement), and further reduces the
total time by 12.03%. It shows the similar laws when we feed
parking video. For a complex CNN, whose inference time
takes up the most of total time, the proposed DAS benefits
slightly the completion time despite significant data reduction.

C. Feature Map Reduction

The goal of ResMap is to mitigate the heavy intermedi-
ate feature maps through Sparse Encoding. For each layer,
ResMap employs CSR method to encoding the feature map
if its nonzero-rate meets the given threshold. Fig. 14 shows
the effectiveness in data reduction of ResMap. In Fig. 14(a),
ResMap greatly reduces the data in layers 1, 2, 5, 8, 10 and
11, which are mainly the ReLU layers. While in convolutional
layers 4, 7, 9, and 11, ResMap delivers the nearly entire feature
map to the next Worker. As a result, it reduces the average data
volume for a frame by 39.21% and the data for single layer
by at most 87.85%. We then look at VGG16, its feature maps
outputted by layers from 1 to 10 are clearly compressed, and in
the following ReLU layers, ResMap is also working efficiently.
In average, ResMap reduces the data by 46.12%. As for the

ResNet with 173 layers, ResMap makes critical progress in
layers from 0 to 30, and reduces the average data volume by
24.67%. Finally for the GoogLeNet, ResMap still obtains a
14.93% reduction. In fact, based on the reductions of each
layer, ResMap enables to perform more efficient scheduling.
Specifically, if the feature map of a layer is not sparse, ResMap
desires to run the next layer in the same Worker, which does
not make any cross-edge transmission. On the contrary, if
ResMap detects a low sparse feature map, it probably encodes
and transmits it to the next Worker for subsequent inferences.

D. Performance Measurements under Diverse Settings

In a general pipeline system, to prevent the tasks including
feature map transmission and CNN inference from piling
up on one Worker and exhausting its constrained memory,
we need to limit the number of parallel pipelines. Fig. 15
shows the achieved performances of LBS and DAS when
setting the maximum parallel pipelines (Mpp) to 1, 2, and
3. Mpp equals m, which means that at most m frames are
processed at the same time in all Workers. If setting Mpp
to 1, one frame begins to be executed until the previous
frame are finished, which can hardly utilize the advantage
of multi-edge collaboration. However, using a large Mpp that
exceeds the available resources in terms of computation and
memory probably makes no sense to accelerate the average
processing time. When running AlexNet, our proposed DAS
costs 2.57, 1.25, and 1.1 seconds when Mpp equals 1, 3, and
6 respectively, which outperform the LBS by 1.38, 0.43, and
0.38 seconds respectively. We next measure the impacts for
VGG16 in Fig. 15(b). Due to the expensive inference and
transmission overhead, assigning a bigger Mpp does little to
improve the completion time, but increase the computation and
memory load of the involved Workers. For instance, DAS gets
the similar average processing times (i.e., 14.02 and 14.01
seconds) when setting Mpp to 3 and 6 respectively. In fact,
Mpp relies on both the complexity of CNNs and the number of
Workers. We only employ two Workers, which largely limits
its value range. In the future work, we focus on deploying
more edge Workers to explore the optimal Mpp.

As stated before, ResMap makes model partitioning scheme
at video chunk granularity and generates an executive file
IFR for each frame in this chunk. Hence each IFR shares the
same partition scheme, but carries different data. Increasing the
length of the IFR set avoids continuous updates to the buffer in
each Worker, but is probably not applicable to the videos with
frequent scene-changes. Hence we flexibly choose the length

1 3 6
Maximum Parallel Pipelines

0

1

2

3

4
A

ve
ra

ge
 P

ro
ce

ss
in

g
Ti

m
e

(s
) 3.95

1.68
1.48

2.57

1.25 1.1

LBS
DAS

(a) Case for AlexNet

1 3 6
Maximum Parallel Pipelines

0

5

10

15

20

25

30

35

A
ve

ra
ge

 P
ro

ce
ss

in
g

Ti
m

e
(s

) 32.38

14.02 14.01

29.65

12.43 12.38

LBS
DAS

(b) Case for VGG16
Fig. 15. Average processing times under different maximum parallel pipelines.

of IFR set. Fig. 16 illustrates the resulting performances with
diverse settings. In Fig. 16(a) for running AlexNet, LBS costs
a close processing time in average no matter whatever length
is given. While increasing it from 1 to 4, DAS largely improves
the average processing time. However, it makes fewer progress
if we choosing a bigger value such as 10, which is largely
due to the variation of both the video content and available
bandwidth. As for running VGG16 in Fig. 16(b), DAS is much
more sensitive to the length of IFR. For DAS, until all the
frames of last chunk have been finished, it begins to process
the arrival video chunk. Hence, setting the length to 1 means
that Mpp = 1, thus not taking the advantage of pipeline
execution and incurring a poor processing time. It also makes
no sense to choosing an excessive length for VGG16. As a
result, we assign 4 and 3 to AlexNet and VGG16 respectively.

VI. RELATED WORK

A. CNN Inference Acceleration.

To mitigate the insufficient computation and memory at
the edges but accelerate the CNN inference, a variety of
approaches have been studies, such as model compression [6]–
[8], model early-exit [9]–[11], model partitioning [12]–[15],
[20]–[23], data partitioning [25]–[29], and specific hardware
or tools [30], [31]. Specifically, model compression is to
prune the redundant layers by identifying the unimportant
connections [6] or applying L1-norm channel pruning and
Fisher pruning [8]. However, the compressed model still
generates large intermediate data when given a huge input.
Model early-exit proposes to execute partial DNNs to output
the result [9]–[11]. For instance, BranchyNet [10] adds several
exit branches to the origin CNNs. This method has to retrain
the model, which is time-consuming. Model partitioning is to
split the CNNs and distribute the slices to multiple devices.
For instance, Jeong et al. [22] run these two operations in
parallel. However, the edge-cloud collaborative method may
incur lager amounts of intermediate data transmission. Data
partitioning schedules the partitions to devices for parallel
executions. MoDNN [25] presents two methods for fully-
connected and convolutional layers. However, this method
causes significant synchronization overhead. The Intel Open-
Vino [30] and Google TPU [31] do accelerate the inference,
but not all devices are provisioned with these tools.

B. Collaborative Edge Video Analytics

Many cities and enterprises are deploying thousands of edge
cameras and using video analytics to serve a variety of 24x7

2 4 6 8 10
Length of the IFR Set

1.1

1.2

1.3

1.4

1.5

1.6

A
ve

ra
ge

 P
ro

ce
ss

in
g

Ti
m

e
(s

)

AlexNet: LBS
AlexNet: DAS

(a) Case for AlexNet

2 4 6 8 10
Length of the IFR Set

14

16

18

20

22

24

A
ve

ra
ge

 P
ro

ce
ss

in
g

Ti
m

e
(s

)

VGG16: LBS
VGG16: DAS

(b) Case for VGG16
Fig. 16. Average processing times with different lengths of the IFR set.

applications [33], [34] such as traffic control and security
monitoring. As the progress of Edge Intelligence (EI) or Edge
AI [32], there emerges increasing efforts [20]–[23], [35]–[39]
to accelerate the video analytics through collaborative edge de-
vices and the cloud. DeepDecision [36] also ties together front-
end devices and powerful cloud to complete the video analytics
tasks. AutoML [37] proposes to configure the wireless network
parameters to advance the video analytics at edge server.
Han et al. [39] achieve efficient video analytics by adjusting
the number of frames to be offloaded to the edge server.
Most existing works consider an end-edge-cloud collaborative
method. However, it incurs significant delay to transmit the
large intermediate data. Our proposed ResMap delivers the
cross-edge data using reliable inter-device connections, thus
largely reducing the transmission overhead.

Despite several works that considered the multi-edge col-
laboration [12]–[19], they fall insufficient. Studies [12]–[14]
make effective model partition based on the runtime infor-
mation, but they do not optimize the feature map transmis-
sion. Works [15]–[17] use adaptive compression or pruning
technique to reduce the data volume, however resulting in a
decrease in analytics accuracy. The rest [18], [19] propose to
iteratively derive the optimal scheme from the large solution
space, however incurring a huge profiling delay. ResMap
optimizes both the model partitioning and data transmission.

VII. CONCLUSION

In this paper, we present ResMap, a new video analytics
framework that significantly accelerates the CNN inference
by employing multi-edge collaborative execution. Rather than
fixing the partition scheme, ResMap incorporates an online
Data-Aware Scheduler, which designs a DP (Dynamic Pro-
gramming)-based algorithm to flexibly partition the specific
CNNs based on both the transmission data estimation of the
arrival video chunk and the runtime information. In addi-
tion, ResMap proposes Sparse Encoder to reduce the large
volume of intermediate feature map. For each frame to be
analyzed, ResMap generates a customized IFR file to conduct
its execution at each device. Coherently, ResMap employs
Master-Worker mechanism to run each cross-edge inference
task. We have implemented ResMap fully based on COTS
hardware, and the experimental results show that ResMap
reduces the intermediate feature map volume by 14.93-46.12%
and improves the average processing time by 17.43-30.6%. In
the future work, we aim to apply ResMap into more types of
videos as well as complex CNNs to further test its generality.

REFERENCES

[1] Microsoft HoloLens. https://www.microsoft.com/en-us/hololens/.
[2] Magic Leap One. https://www.magicleap.com/.
[3] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A survey on endedge-

cloud orchestrated network computing paradigms: Transparent comput-
ing, mobile edge computing, fog computing, and cloudlet,” in ACM
Computing Surveys, vol. 52, no. 6, pp. 1–36, 2019.

[4] J. Chen and X. Ran, “Deep Learning With Edge Computing: A Review,”
in Proceedings of the IEEE, vol. 107, no. 8, pp. 1655-1674, 2019.

[5] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar and A. Y. Zomaya,
“Edge Intelligence: The Confluence of Edge Computing and Artificial
Intelligence,” in IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7457-
7469, 2020.

[6] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proceedings of NIPS, pp.
1135–1143, 2015.

[7] E. J. Crowley, J. Turner, A. Storkey, andM. O’Boyle, “A closer
look at structured pruning for neural network compression,” in
arXiv:1810.04622, 2019.

[8] X. Zhang, X. Zhou, M. Lin and J. Sun, “ShuffleNet: An Extremely
Efficient Convolutional Neural Network for Mobile Devices,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 6848-6856, 2018.

[9] L. Li, K. Ota and M. Dong, “Deep Learning for Smart Industry:
Efficient Manufacture Inspection System With Fog Computing,” in IEEE
Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4665-4673,
2018.

[10] S. Teerapittayanon, B. McDanel and H. T. Kung, “BranchyNet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR), pp. 2464-2469,
2016.

[11] S. Scardapane, M. Scarpiniti, E. Baccarelli, and A. Uncini, “Why should
we add early exits to neural networks?,” in Cognitive Computation, vol.
12, no. 5, pp. 954–966, 2020.

[12] J. H. Ko, T. Na, M. F. Amir and S. Mukhopadhyay, “Edge-Host
Partitioning of Deep Neural Networks with Feature Space Encoding
for Resource-Constrained Internet-of-Things Platforms,” in 2018 15th
IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS), pp. 1-6, 2018.

[13] M. Xu, F. Qian, and S. Pushp, “Enabling cooperative inference of deep
learning on wearables and smartphones,” in arXiv: 1712.03073, 2017.

[14] W. He, S. Guo, S. Guo, X. Qiu, and F. Qi, “Joint DNN partition
deployment and resource allocation for delay-sensitive deep learning
inference in IoT,” in IEEE Internet of Things J., vol. 7, no. 10, pp.
9241–9254, 2020.

[15] D. Hu and B. Krishnamachari, “Fast and Accurate Streaming CNN
Inference via Communication Compression on the Edge,” in 2020
IEEE/ACM Fifth International Conference on Internet-of-Things Design
and Implementation (IoTDI), pp. 157-163, 2020.

[16] J. Mao et al., “MeDNN: A distributed mobile system with enhanced
partition and deployment for large-scale DNNs,” in 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 751-
756, 2017.

[17] L. Zeng, X. Chen, Z. Zhou, L. Yang and J. Zhang, “CoEdge: Cooperative
DNN Inference With Adaptive Workload Partitioning Over Heteroge-
neous Edge Devices,” in IEEE/ACM Transactions on Networking, vol.
29, no. 2, pp. 595-608, 2021.

[18] X. Tang, X. Chen, L. Zeng, S. Yu and L. Chen, “Joint Multiuser DNN
Partitioning and Computational Resource Allocation for Collaborative
Edge Intelligence,” in IEEE Internet of Things Journal, vol. 8, no. 12,
pp. 9511-9522, 2021.

[19] K.J. Hsu, K. Bhardwaj, A. Gavrilovska. “Couper: Dnn model slicing
for visual analytics containers at the edge,” in Proceedings of the 4th
ACM/IEEE Symposium on Edge Computing, pp. 179-194, 2019.

[20] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” in ACM SIGARCH Computer Architecture
News, vol. 45, no. 1, pp. 615–629, 2017.

[21] C. Hu, W. Bao, D. Wang and F. Liu, “Dynamic Adaptive DNN Surgery
for Inference Acceleration on the Edge,” in IEEE INFOCOM 2019 -
IEEE Conference on Computer Communications, pp. 1423-1431, 2019.

[22] H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, “IONN: Incremental
offloading of neural network computations from mobile devices to edge

servers,” in Proceedings of the ACM Symposium on Cloud Computing,
pp. 401–411, 2018.

[23] S. Dey, J. Mondal and A. Mukherjee, “Offloaded Execution of Deep
Learning Inference at Edge: Challenges and Insights,” in 2019 IEEE
International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops), pp. 855-861, 2019.

[24] The VIRAT Video Dataset[EB/OL]. https://viratdata.org/.
[25] J. Mao, X. Chen, K. W. Nixon, C. Krieger and Y. Chen, “MoDNN: Local

distributed mobile computing system for Deep Neural Network,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1396-1401, 2017.

[26] Z. Zhao, K. M. Barijough and A. Gerstlauer, “DeepThings: Distributed
Adaptive Deep Learning Inference on Resource-Constrained IoT Edge
Clusters,” in IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 37, no. 11, pp. 2348-2359, 2018.

[27] L. Zhou, M. H. Samavatian, A. Bacha, S. Majumdar, and R. Teodorescu,
“Adaptive parallel execution of deep neural networks on heterogeneous
edge devices,” in Proceedings of the 4th ACM/IEEE Symposium on
Edge Computing, pp. 195–208, 2019.

[28] R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Collaborative execution
of deep neural networks on Internet of Things devices,” in arXiv:
1901.02537, 2019.

[29] R. Stahl, Z. Zhao, D. Mueller-Gritschneder, A. Gerstlauer, and U.
Schlichtmann, “Fully distributed deep learning inference on resource-
constrained edge devices,” in Proceedings of Embedded Computer
Systems: Architectures, Modeling, and Simulation, pp. 77–90, 2019.

[30] Intel distribution of OpenVINO toolkit. [Online]. Available:
https://software.intel.com/content/www/us/en/develop/tools/ openvino-
toolkit.html

[31] Cloud TPU. [Online]. Available: https://cloud.google.com/tpu
[32] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen and M. Chen, “In-Edge

AI: Intelligentizing Mobile Edge Computing, Caching and Communi-
cation by Federated Learning,” in IEEE Network, vol. 33, no. 5, pp.
156-165, 2019.

[33] Artificial Intelligence Surveillance Cameras Security.
https://www.theverge.com/2018/1/23/16907238/artificial-intelligence-
surveillance-cameras-security.

[34] New Search Engine Revolutionizes Video Surveillance. https://i-
hls.com/archives/80734.

[35] L. Liu, H. Li, M. Gruteser. “Edge assisted real-time object detection for
mobile augmented reality,” in 25th annual international conference on
mobile computing and networking, pp. 1-16, 2019.

[36] X. Ran, H. Chen, X. Zhu, Z. Liu and J. Chen, “DeepDecision: A
Mobile Deep Learning Framework for Edge Video Analytics,” in IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications, pp.
1421-1429, 2018.

[37] A. Galanopoulos, J. A. Ayala-Romero, D. J. Leith and G. Iosifidis, “Au-
toML for Video Analytics with Edge Computing,” in IEEE INFOCOM
2021 - IEEE Conference on Computer Communications, pp. 1-10, 2021.

[38] T. Tan and G. Cao, “FastVA: Deep Learning Video Analytics Through
Edge Processing and NPU in Mobile,” in IEEE INFOCOM 2020 - IEEE
Conference on Computer Communications, pp. 1947-1956, 2020.

[39] M. Hanyao, Y. Jin, Z. Qian, S. Zhang and S. Lu, “Edge-assisted Online
On-device Object Detection for Real-time Video Analytics,” in IEEE
INFOCOM 2021 - IEEE Conference on Computer Communications,
pp. 1-10, 2021.

