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Abstract—In recent years, many crowdsourcing platforms have
emerged, using the resources of recruited workers to perform di-
verse outsourcing tasks, where the video analytics attracts much
attention due to its practical implications. For maximum profits,
platforms carefully choose the workers and determine the video
analytics configurations to ensure accuracy; meanwhile, workers
possess the flexibility to tailor the configurations for their indivi-
dual gains, which makes it hard for platforms to optimize their
profits considering the platform-worker conflicts. In this paper,
we design an incentive mechanism for Multi-leader game-based
video Analytics upon CROwdsourcing, named MACRO, to over-
come the above situation. Under that mechanism, we first formu-
late the utility optimization problems for platforms and workers,
respectively. We then propose a dual ascent-based method to op-
timally determine the video analytics configurations for a multi-
platform game, ensuring Pareto efficiency. Moreover, in the con-
text of a multi-leader game involving platform-worker conflicts,
we design an incentive function with its incentive factor update
strategy and propose an ADMM-based approach for maximizing
incentives that motivate workers to contribute to the platforms’
profits. Rigorous proofs demonstrate the linear convergence of
the MACRO to the multi-leader Stackelberg equilibrium. Trace-
driven experiments show that MACRO improves the Pareto effi-
ciency by 26.3%, outperforming other approaches.

I. INTRODUCTION

In recent years, mobile crowdsourcing [1–3] has emerged as
a prominent paradigm, resulting in the proliferation of various
platforms (e.g., CrowdFlower [4], AMT [5]). They publish di-
verse tasks, including mobile sensing [6], traffic prediction [7]
and image labeling [8], and employ a large number of crowd-
sourcing workers with mobile devices to complete them. The
low cost [9], high flexibility [10], and extensive coverage [11]
provided by mobile crowdsourcing have spurred numerous re-
search efforts, covering aspects such as data aggregation [12,
13], worker recruitment [14, 15], and task assignment [16, 17].

Meanwhile, for crowdsourcing workers, the performance of
mobile devices (e.g., smartphones, tablets, and laptops) is con-
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Fig. 1. Conflicts among Platforms, among Workers, and between Platforms
and Workers in Video Analytics Crowdsourcing Scenarios

tinuously improving [18, 19], and computer vision technolo-
gies [20, 21] are evolving steadily. Benefiting from the afore-
mentioned trends, among various crowdsourcing tasks, video
analytics [22–24], such as object classification, content under-
standing, and behavior recognition has garnered much atten-
tion [25, 26] due to its practical implications. To complete the
video analytics tasks, platforms have been actively engaging in
hiring proper workers, sending video data to them, and strate-
gically selecting the configurations [27] (i.e., frame rates, reso-
lutions and models) to maximize their accuracy-based profits.

Additionally, workers possess the flexibility [28] to accept
the video analytics tasks or not. Upon receiving the tasks, they
utilize their mobile devices equipped with video analytics mo-
dels [29, 30] to complete them. During the task execution pro-
cess, workers may tailor the configurations for their individual
gains. Specifically, different video analytics configurations re-
sult in varying energy consumption (e.g., for transmission and
computation) [31, 32] on their mobile devices, based on which
workers are compensated with corresponding gains [25, 26].
Notably, conflicts can emerge between platforms and workers
in determining video analytics configurations, due to their dis-
tinct optimization goals. Therefore, as demonstrated in Fig. 1,
it is nontrivial for platforms to optimally choose the recruited
workers and determine the video analytics configurations for
maximum accuracy-based profits while considering the work-
ers’ energy-related gains. We will face these challenges:

Firstly, due to the heterogeneity of the video analytics upon
crowdsourcing, it is hard to appropriately decide on the con-
figurations to maximize task completion benefits. As shown in



our case studies later, the variation in video data and task types
among platforms introduces complexity to the optimization of
their profits based on video analytics accuracy. Moreover, plat-
forms’ bandwidth budgets [33] further complicate the pursuit
of accuracy-related profits, requiring a delicate trade-off bet-
ween accurate results and efficient data transmission. In addi-
tion, considering the benefits for workers, it is essential to pay
attention to their diverse computing capabilities and choices of
configurations for video analytics. Besides, the energy consu-
mption, directly determined by the configurations on workers’
mobile devices, significantly impacts their compensation gains
[25, 26], necessitating its inclusion for maximum benefits.

Secondly, since the computation resources (e.g., CPU/GPU)
of the workers’ mobile devices are limited [34], conflicts arise
among platforms when aiming to maximize the profits. Specif-
ically, multiple platforms may hire the same worker for video
analytics, but the worker’s capacity constraints may hinder the
platforms from achieving their desired optimal configurations.
Furthermore, the above mentioned configuration of each plat-
form is multi-dimensional, corresponding to multiple workers,
which makes it more challenging to simultaneously optimize
all platforms’ objectives. Typically, the number of workers is
quite large compared to that of platforms, which can result in
significant computational overhead when determining the con-
figurations [35]. The conflicts and computational complexities
highlight the need for innovative approaches to effectively op-
timize the video analytics across multiple platforms.

Last but not least, the conflict between platforms and work-
ers makes it fairly intractable to simultaneously optimize their
respective benefits. Despite the success of profit maximization
across all platforms, the optimal video analytics configurations
for platforms may not align with those for the workers [36].
Thus, workers may prioritize their own interests over the plat-
forms’ and shift configuration decisions to maximize their own
gains, which is detrimental to the platforms. The relationship
between each platform and workers resembles that in single-
leader multi-follower Stackelberg game [37], which is used to
address the conflicts between the leader and followers. How-
ever, our scenario involves multiple platforms that compete for
the workers, and thus the conventional Stackelberg game me-
thod, suitable for a single platform, does not work. Hence, an
incentive-based mechanism is required to motivate the workers
to contribute to maximizing the platforms’ profits.

However, existing works have certain limitations in tackling
the aforementioned challenges. Some studies [22–24] focus on
optimizing video analytics configurations, but their approa-
ches are not directly applicable to addressing those conflicts
between platforms and workers for video analytics. Other re-
search [25, 38–40] studies the selection of suitable workers
for crowdsourcing tasks, but few consider the complexities
of simultaneously recruiting workers for video analytics from
multiple platforms. The remaining studies [28, 36, 41, 42] ex-
plore incentive mechanisms with game theory, but they do not
account for the difficulty of efficiently optimizing incentive
decisions when dealing with a substantial number of workers.

In this paper, we design an incentive mechanism for Multi-

TABLE I
RELATED WORKS CONSIDERING THE CONFLICTS AMONG WORKERS,

AMONG PLATFORMS, AND BETWEEN WORKERS AND PLATFORMS.
Related Works Workers Platforms Platform&Worker Task Category

MCTA[2]
√ √

× Mobile Sensing
ME-UCB[38]

√
× × Truth Discovery

LOL[25]
√

× × Video Analytics
AIAI[28]

√
×

√
Mobile Sensing

DDIM[41]
√ √ √

Mobile Sensing
Crowd2[26]

√ √
× Video Analytics

MACRO
√ √ √

Video Analytics

leader game-based video Analytics upon CROwdsourcing, de-
noted as MACRO, which addresses the above challenges. Un-
der mechanism MACRO, we firstly formulate the utility opti-
mization problems for platforms and workers, respectively. For
each platform, its profit mainly depends on the video analytics
accuracy while the configurations, such as frame rates, should
be constrained by bandwidth budget. For each worker, deter-
mining the optimal video analytics configuration is also essen-
tial to maximize its energy consumption-related gains, which,
however, is limited by the availability of computing resources.

In order to achieve the goal of maximizing platforms’ prof-
its while taking into account the gains of workers, we analyze
and tackle the inter-platform and platform-worker conflicts for
heterogeneous video analytics tasks upon crowdsourcing. We
propose a dual ascent-based method to determine appropriate
video analytics configurations for a multi-platform game, en-
suring Pareto efficiency. Moreover, in the context of a multi-
leader game involving platform-worker conflicts, we design an
incentive function with its incentive factor updating strategy,
and propose an ADMM-based incentive maximization meth-
od that motivates workers to contribute to the platforms’ Pare-
to efficiency. Rigorous proofs show that MACRO exhibits lin-
ear convergence to the multi-leader Stackelberg equilibrium.

Extensive trace-driven experiments conducted on the video
dataset PANDA [43] show MACRO’s superiority in achieving
the multi-leader Stackelberg equilibrium. Concretely, MACRO
improves the Pareto efficiency for yolov7-based video analyt-
ics crowdsourcing by 26.3% on average, outperforming others.
To summarize, we make the following contributions:
• To our knowledge, this is the first work to optimize the

crowdsourcing utilities for video analytics scenarios, si-
multaneously considering the conflicts among platforms,
among workers, and between platforms and workers.

• We design an ADMM-based incentive mechanism called
MACRO, coordinating the video analytics configurations
for platforms and workers, which reaches the multi-leader
Stackelberg equilibrium and ensures Pareto efficiency.

• Trace-driven experiments evaluate the effectiveness, effi-
ciency, scalability, and overhead of MACRO, comparing
it with other existing works.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Background and Motivation
Crowdsourcing platforms recruit workers to accomplish var-

ious crowdsourcing tasks, such as mobile sensing [2, 28, 41],
truth discovery [38], and video analytics [25, 26]. As shown in
Table I, existing research has considered different conflicts in
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Fig. 2. Motivation and Case Studies for Mechanism MACRO

crowdsourcing scenarios involving three categories as follows.
Conflicts among workers [25, 38] are the competitions among
workers when platforms recruit them for task completion, and
some workers may not be selected. Conflicts among platforms
[2, 26] arise when multiple platforms face the challenge of si-
multaneously selecting the same workers for the limited com-
putational resources. Platform-worker conflicts [28, 41] occur
when platforms and workers have divergent interests in com-
pleting of crowdsourcing tasks, such as in the choice of confi-
gurations, leading to conflicts between the two parties.

Although previous studies have explored various types of
conflicts, we notice that for video analytics tasks, a research
gap exists in simultaneously considering the conflicts among
workers, among platforms, and between platforms and work-
ers, warranting further investigation. Moreover, through exper-
iments shown in Fig. 2(a), we validate that existing approaches
[25, 26] for video analytics crowdsourcing solely addressing
the conflicts among workers or platforms have a negative im-
pact on the profits of platforms (defined as Pareto efficiency
[44] later), compared to an optimal approach that additionally
considers the conflicts between platforms and workers. As a
result, in order to overcome the aforementioned situation and
bridge this gap in research, we design an incentive mechanism
called MACRO for video analytics upon crowdsourcing which
incentivizes workers to contribute to the platforms’ Pareto effi-
ciency and tackles the platform-worker conflicts.
B. System Settings and Models

Video Analytics upon Crowdsourcing. In our mechanism
MACRO, the set of platforms is denoted as N = {1, ..., N},
and the set of workers for video analytics is M = {1, ...,M}.
Each platform receives a variety of video analytics tasks from
the requestors and then recruits the proper workers for them.
During worker selection for video analytics, the configurations
including the video frame rate, resolution and analytics model
should be considered. Due to the limited capacity of mobile
devices, we consider that each worker m’s device is equipped
with a single CNN model for analytical simplicity [45], and
the input resolution of this model is denoted as sm. However,
our proposed mechanism can also be extended for multiple
CNNs on each mobile device. Once the worker m is chosen,

the resolution is set as sm to match the input resolution of the
equipped CNN model on its mobile device [46].

Furthermore, platform n needs to determine the frame rate
decision fn,m, satisfying fn,m ∈ [0, Fn],∀n ∈ N ,m ∈M,
where Fn is the maximum frame rate that can be set for video
analytics, and it is decided by the video data provided from
requestors to platform n. When fn,m is set as 0, it means that
the platform n does not recruit worker m for video analytics.
Otherwise, platform n dispatches the video analytics task to
worker m, and the frame rate is determined as fn,m. Similar to
[25], since there exists a large amount of to-be-analyzed video
data in the crowdsourcing scenario, the frame rate decision can
be approximately regarded as a continuous variable between 0
and Fn,m. For ease of expression later, we denote the frame
rate decision related to platform n as fn,· = {fn,1, ..., fn,M},
and f·,m = {f1,m, ..., fN,m} related to worker m.

Utility for Platforms. The revenue of each platform n is
affected by the accuracy an,m of the video analytics task
on each worker m’s device. To evaluate the video analytics
accuracy, we employ the commonly used metric F1-score [47],
and we present its specific calculation details in Section V.A.
However, platforms need to decide the video analytics config-
urations before videos are fed into DNN models. Fortunately,
following some existing works [26, 48], we observe that the
F1-score based accuracy depends on video analytics configu-
rations, and it can be formulated as

an,m = φn,m(fn,m)εn,m(sm), (1)

where the concave functions φn,m(fn,m) = c1(1− e−c2fn,m)
and εn,m(sm) = c3(1− e−c4sm) represent the accuracy with
respect to frame rate fn,m and resolution sm. Related works
[26, 48] only consider the varying video content or the het-
erogeneity of workers’ models when fitting the parameters c1,
c2, c3 and c4. We take both of them into consideration when
modeling Eq. (1) inspired by the results shown in Fig. 2(b).

Based on marginal effects [49] in economics, the revenue
for each platform n depending on video analytics accuracy
an,m can be modeled as a concave function. It intuitively
means that as accuracy increases closer to 1, the gains for each
platform increase more slowly. Following the existing work
[26], we set the revenue function Gn(an,m) with respect to
accuracy as a logarithmic form function in our system model.
Overall, we model the utility function for platform n as

Up
n(fn,·) =

∑M

m=1
up
n,m(fn,m) =

∑M

m=1
Gn(an,m), (2)

where up
n,m(fn,m) is calculated as Gn(an,m), and it repre-

sents platform n’s utility resulting from worker m.
When the platform n dispatches video analytics tasks to the

recruited workers, the to-be-analyzed video data may occupy
its bandwidth resource. However, the bandwidth budget Bn is
usually considered limited [33], which is represented as∑M

m=1

fn,m
Fn

Rnbn,m ≤ Bn, (3)

where Rn is the original bitrate of video data from platform
n. Without loss of generality, we consider that the data trans-



mission paths (e.g., Wi-Fi [50], 4G LTE [51] and 5G [52]) be-
tween the platforms and workers may be different. Thus, the
monetary cost for each unit of bandwidth occupancy is unique
for each pair of platform n and worker m, denoted as bn,m.

Utility for Workers. According to existing works [31, 32],
for crowdsourcing workers equipped with mobile devices, the
battery becomes a significant concern due to the inconvenience
of recharging. Thus, workers’ gains can be measured based on
compensation for energy consumption [25, 26], which mainly
results from transmission and computation for video analytics.

Transmission energy consumption arises when the worker
downloads video data from crowdsourcing platforms, and it is
proportional to the size of the downloaded video data. Inspired
from [48], the data size of a frame with resolution sm can be
calculated as α(sm)2, where α is a constant. Thus, the energy
consumption incurred by worker m’s downloading video data
from crowdsourcing platforms is modeled as

ed
m =

∑N

n=1
γd
mα(sm)2fn,m, (4)

where γd
m represents the energy consumption on worker m’s

device for downloading one bit of video data from platforms.
To verify the validity of the above Eq. (4) and profile for the
energy consumption rate γd

m, experiments on 1080p and 5ps
videos are conducted with power analyzer (AITEK AWE2101
[53]), as shown in Fig. 2(c). Besides, energy consumption in-
curred by video analytics on worker n’s device [26] is

ec
m =

∑N

n=1
γc
n,mfn,m, (5)

where γc
n,m denotes the energy consumption on worker m’s

device for analyzing each video frame from platform n. Dif-
ferent from the existing work [26], when profiling for γc

n,m,
we further take into account the differences in video analytics
tasks across platforms, as shown in Fig. 2(c).

Following [25, 26], workers’ earnings mainly cover their ex-
ecution cost of energy consumption as compensation. Based
on it, we model the utility function for each worker m as

Uw
m(f·,m) =

∑N

n=1
uw
n,m(fn,m) = ωm(ed

m + ec
m), (6)

where ωm is priced [54] by worker m for consuming one unit
of energy, and uw

n,m(fn,m) = ωm(γd
mα(sm)2 + γc

n,m)fn,m
means the utility of worker m when executing the video ana-
lytics task from platform n. It is noted that workers’ benefits
are affected by compensation for energy consumption, which
is further determined by the configurations of video analytics.

Obviously from Eq. (6), workers can increase their video
analysis workload by raising the frame rate, thereby boosting
their earnings. However, on each worker’s device, the com-
puting resources (e.g., CPU/GPU) [55] are constrained as∑N

n=1
fn,mcn,m ≤ Cm, (7)

where cn,m corresponds to the computation demand for one
video frame analyzed on worker m’s device. It is worth noting
that the computation demand cn,m for each platform n’s video
analytics task executed with worker m’s model is considered
distinctive, following the CPU occupancy results in Fig. 2(d).

C. Problem Formulation

Based on the above models, we give the problem formula-
tion for each crowdsourcing platform and worker as follows.
For each platform n, the optimization problem Pp

1,n is:

Pp
1,n: max

fn,m∈[0,Fn]
U p
n(fn,·)=

∑M

m=1
up
n,m(fn,m) s.t. Ineq. (3),

where each platform n needs to select the proper workers and
determines the frame rate decision fn,· within its bandwidth
budget to maximize the analytics accuracy-based revenue. In
the meantime, the optimization problem Pw

1,m for worker m is:

Pw
1,m: max

fn,m∈[0,Fn]
Uw
m(f·,m)=

∑N

n=1
uw
n,m(fn,m) s.t. Ineq. (7),

where each worker m can also adjust its frame rate decision
f·,m to maximize its energy consumption-related utility under
the computing resource constraint Cm.

III. MULTI-PLATFORM GAME FOR PARETO EFFICIENCY

A. Solution Space Reduction for Original Problems

Since the bandwidth budget for each platform n is limited, if
its frame rate decisions fn,· are all set to Fn, the cost of the oc-
cupied bandwidth will exceed Bn, i.e.,

∑M
m=1Rnbn,m > Bn.

Based on the above reasonable assumption, we present the fol-
lowing Proposition 1 and convert the original problem Pp

1,n to

Pp
2,n : max

fn,m∈[0,Fn]
Up
n(fn,·) =

∑M

m=1
up
n,m(fn,m) (8)

s.t.
∑M

m=1
(Rnbn,m/Fn)fn,m −Bn = 0. (9)

Proposition 1. For each crowdsourcing platform n, the opti-
mization problem Pp

1,n can be equivalently converted to Pp
2,n.

Proof. We prove it by contradiction. Assume the optimal f̄n,·
for Pp

1,n satisfies
∑M
m=1(Rnbn,m/Fn)f̄n,m < Bn. When each

worker m’s frame rate is Fn, the cost for bandwidth will ex-
ceed Bn, i.e.,

∑M
m=1Rnbn,m > Bn. Besides, the optimization

goal U p
n(fn,·) is strictly increasing, so there must exist a wor-

ker m and its increased frame rate f ′n,m∈(f̄n,m, Fn], such that
constraint (3) is met and the optimization goal U p

n(fn,·) is im-
proved. Thus, the existence of f ′n,m contradicts the optimality
of f̄n,·, which means

∑M
m=1(Rnbn,m/Fn)f̄n,m = Bn.

Similar to Proposition 1, due to the constrained computing
capacity on each worker n’s mobile device, the original prob-
lem Pw

1,m is transformed to Pw
2,m as follows:

Pw
2,m : max

fn,m∈[0,Fn]
Uw
m(f·,m) =

∑N

n=1
uw
n,m(fn,m) (10)

s.t.
∑N

n=1
cn,mfn,m − Cm = 0. (11)

Proposition 2. For each worker m, the optimization problem
Pw
1,m can be equivalently converted to Pw

2,m.
Proof. Omitted due to similarity to Proposition 1.

Via problem transformation, all the less-than-equal signs in
original problems are converted to the equal signs in Pp

2,n and
Pw
2,m, which reduces the solution space for the overall frame

rate decision f , defined as {fn,·|n ∈N } or {f·,m|m ∈M}.



B. Pareto Efficiency in Multi-platform Game

We first consider the conflicts between the platforms in re-
cruiting workers for video analytics due to the limited comput-
ing resource of workers, modeled as a multi-platform game:

Definition 1 (Multi-platform Game). Multi-platform game for
video analytics upon crowdsourcing consists of the following:
• Players: Platforms N .
• Strategies: fn,·,∀n ∈N .
• Payoffs: U p

n(fn,·) =
∑M
m=1 u

p
n,m(fn,m),∀n ∈N .

• Additional Constraints: (9), (11), ∀n ∈N ,m ∈M.

For each platform n, it needs to not only select the proper
workers (i.e., whether fn,m is 0, ∀m ∈M) but also determine
the optimal frame rate decision fn,· for the selected workers.
Besides, each platform has its own bandwidth budget, which
makes it harder to simultaneously maximize the payoffs of all
platforms in multi-platform game. To balance the objectives
among different platforms, we leverage the concept of Pareto
efficiency [44], which guarantees that resources are allocated
in the most efficient manner within the given constraints. We
define the Pareto efficiency in multi-platform game as follows.

Definition 2 (Pareto Efficiency (PE) in Multi-platform Game).
The overall strategy fPE for video analytics reaches the Pareto
efficiency if and only if there exists no other overall strategy
f , such that for at least one platform n, U p

n(fn,·) > U p
n(fPE

n,·),
and for any other platform i except n, U p

i (fi,·) ≥ U p
i (fPE

i,· ).

We notice that PE is an ideal outcome, implying that no
platform can change its strategy to increase its payoff without
decreasing others’. However, based on Definition 2, it is hard
to directly obtain the overall strategy fPE satisfying PE.

C. Dual Ascent-based Approach for Pareto Efficiency

For Pareto efficiency in multi-platform game, we propose a
dual ascent-based [56] approach shown in Alg. 1. The idea of
Alg. 1 is to reach Pareto efficiency by maximizing the social
welfare [26] of all platforms, i.e.,

∑N
n=1 U

p
n(fn,·), with the

constraints in (9) and (11) satisfied. We prove the effectiveness
of Alg. 1 in Thm. 1 later. To realize the idea, we leverage the
dual ascent method [56] for the above maximization problem
with constraints. We present the technical details as follows:

1) Lagrangian Function Construction: Due to the presence
of constraints, directly solving the social welfare maximization
problem is not trivial. To transform it into an unconstrained
optimization problem, we build the Lagrangian function [57]
as L(f ,λ,µ) for the platforms’ social welfare maximization
problem with equality constraints (9), (11) as L(f ,λ,µ) =

−
∑N

n=1
Up
n(fn,·)−

∑N

n=1
λn(

∑M

m=1

Rnbn,m

Fn
fn,m−Bn)

−
∑M

m=1
µm(

∑N

n=1
cn,mfn,m−Cm),

(12)

where λ= {λ1, ..., λN} and µ= {µ1, ..., µM} are Lagrange
multipliers, which are used to incorporate the equality con-
straints into L(f ,λ,µ) involving platforms’ social welfare.

2) Lagrangian Function Minimization: Building on the
aforementioned Lagrange function L(f ,λ,µ), we convert

Algorithm 1: Dual Ascent for PE in Multi-platform Game
Input: Rn, bn,m, Fn, Bn, cn,m, Cm, ∀n ∈N ,m ∈M

1 t← 0, and Randomly Initialize f0, λ0 and µ0;
2 while t < Tmax do
3 f t+1 ← argminf L(f ,λt,µt);
4 λt+1

n ← λtn − η(
∑M
m=1

Rnbn,m

Fn
f t+1
n,m −Bn), ∀n ∈N ;

5 µt+1
m ← µtm − η(

∑N
n=1 cn,mf

t+1
n,m − Cm),∀m ∈M;

6 t← t+ 1;

Output: fTmax .

the constrained social welfare maximization problem into a
problem of minimizing function L(f ,λ,µ) as

Pp
3 : minf ,λ,µ L(f ,λ,µ).

Intuitively, based on the definition of L(f ,λ,µ) in Eq. (12),
obtaining the optimal solution to problem Pp

3 entails simul-
taneously optimizing platform’s social welfare and satisfying
the constraint conditions in (9) and (11).

3) Dual Ascent for Problem Pp
3: Given that problem Pp

3

involves three interdependent decision variables {f ,λ,µ},
deriving their optimal solutions concurrently is challenging.
Hence, we employ a dual ascent-based approach to solve it.
Concretely, after randomly initializing {λ0,µ0}, we firstly
solve for the optimal value of f1 as

f1 ← argminf L(f ,λ0,µ0). (13)

Once f1 is decided, we sequentially update {λ1,µ1} as

λ1n ← λ0n − η(
∑M

m=1

Rnbn,m

Fn
f1n,m −Bn),∀n ∈N , (14)

µ1m ← µ0m − η(
∑N

n=1
cn,mf

1
n,m − Cm),∀m ∈M, (15)

where the updates of {λ1,µ1} are performed in the direction
of gradient descent, and η denotes the step size for the updates.
Following the above outlined update process, Alg. 1 iteratively
updates the overall frame rate decision f t and Lagrange mul-
tipliers (λt,µt) in each iteration round t, shown in lines 3-5.
For the optimal solution (f ,λ,µ) to problem Pp

3, adhering to
the dual ascent framework, Tmax is set to a sufficiently large
number of rounds to allow the objective function to converge.
D. Theoretical Analysis

Furthermore, we show the effects of Alg. 1 in Thm. 1:
Theorem 1. The overall frame rate decision fTmax obtained
from Alg. 1, which maximizes the social welfare of platforms,
reaches Pareto efficiency in multi-platform game.
Proof. Following [56], dual ascent-based Alg. 1 can converge
linearly to the optimal fsw for Pp

3 and maximizes platforms’
social welfare, which proves that fTmax = fsw. Next, we pro-
ve fsw reaches PE by contradiction as follows. If fsw does
not reach PE, according to Def. 2, there must exist another
frame rate decision f ′, such that for at least one platform n,
U p
n(f ′n,·) > U p

n(fswn,· ), and for any other platform i except
n, U p

i (f ′i,·) ≥ U p
i (fswi,· ). Therefore, it can be easily obtained

that
∑N
n=1 U

p
n(f ′n,·) >

∑N
n=1 U

p
n(fswn,· ), which contradicts the

optimality of fsw for Pp3. Thus, Thm. 1 is proved.
However, in addition to inter-platform conflicts, platform-

worker conflicts can make it more difficult to achieve Pareto
efficiency because workers can unilaterally change frame rate



decisions to maximize their own utility, i.e., Uw
m(f·,m),∀m ∈

M. Moreover, when the number of workers M increases to a
relatively large size, each platform n needs to update massive
frame rate decisions {f tn,1, ..., f tn,M}, which is highly compu-
tationally intensive. We address the above challenges later.

IV. INCENTIVIZED MULTI-LEADER GAME VIA ADMM
A. Multi-leader Game for Incentivized Crowdsourcing

Platform-worker conflicts mean that the workers have their
own optimization goals in Eq. (10), which may not be consis-
tent with those of the platforms in Eq. (8). Consequently, the
worker will change the frame rate decision to maximize its
own utility, resulting in the platforms’ social welfare not being
maximized, and thus Pareto efficiency may not be achieved.
Naturally, we think of designing an incentive-based method to
encourage workers to contribute to Pareto efficiency. Besides,
the conventional Stackelberg game [37] only works for single-
leader scenarios, and it cannot be directly applied to our mech-
anism MACRO, where multiple platforms recruit workers for
video analytics. Therefore, based on the above analysis, we
present the incentive-based multi-leader game as follows.
Definition 3 (Incentive-based Multi-leader Game). The multi-
leader game for video analytics upon incentivized crowdsourc-
ing consists of the following:
• Players: platforms N and workers M.
• Strategies:

B Platforms: θn,· = {θn,1, ..., θn,M},∀n ∈N .
B Workers: f·,m,∀m ∈M.

• Payoffs:
B Platforms: U p

n(fn,·),∀n ∈N .
B Workers: Im(θ·,m, U

w
m(f·,m)),∀m ∈M.

• Additional Constraints: (9), (11), ∀n ∈N ,m ∈M.
As shown in the above incentive-based multi-leader game

model, the incentive function Im(θ·,m, U
w
m(f·,m)) is used to

replace each worker m’s original optimization goal Uw
m(f·,m),

and it describes the interactions between worker m and other
platforms. Notably, the incentive function Im(θ·,m, U

w
m(f·,m))

is influenced by the incentive factors θ·,m = {θ1,m, ..., θN,m}
decided by platforms. Besides, the platforms’ payoffs are the
same as in multi-platform game, following the classic idea in
incentive mechanisms, i.e., the platforms motivate workers to
adjust the strategies as platforms’ expectation with bonus [58].

Similar to the single-leader Stackelberg game, the incentive
factors θ, defined as {θn,·|n ∈ N } or {θ·,m|m ∈M} will
have an impact on workers’ frame rate strategies. Specifically,
the platforms need to determine the proper incentive factors,
which motivate the workers to adjust their frame rate strategies
for Pareto efficiency defined in Definition 2. Furthermore, it
is necessary to ensure that none of the platforms and workers
have incentives to change their strategies when PE is reached.

To summarize the above requirements in MACRO, we fol-
low the concept of Nash equilibrium [59, 60] for Stackelberg
game and define the multi-leader Stackelberg equilibrium as:
Definition 4 (Multi-leader Stackelberg Equilibrium (MSE)).
A strategy (θ∗,f∗) reaches MSE if and only if the following
2 conditions for platforms and workers, respectively, are met:

Platform 2
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…
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Fig. 3. MACRO for Video Analytics upon Incentivized Crowdsourcing

(a) When the frame rate strategy f∗ is determined by work-
ers, there exists no other strategy (θ,f) changed by plat-
forms such that

∑N
n=1 U

p
n(fn,·) >

∑N
n=1 U

p
n(f∗n,·).

(b) When the incentive factor strategy θ∗ is determined by
platforms, there exists no other strategy (θ∗,f) changed
by workers such that for at least one worker m,

Im(θ∗·,m, U
w
m(f·,m)) > Im(θ∗·,m, U

w
m(f∗·,m)), (16)

and for any other worker j except m,

Ij(θ
∗
·,j , U

w
j (f·,j)) ≥ Ij(θ∗·,j , Uw

j (f
∗
·,j)). (17)

As illustrated in the above definition, the condition (a) is
consistent with Thm. 1, which guarantees the Pareto efficiency
for platforms when MSE is reached, and thus platforms will
not change their strategies. Besides, the condition (b) ensures
that given a strategy (θ∗,f∗) satisfying MSE, no worker can
deviate from f∗ to increase its incentive-based payoff without
decreasing any other workers’. In short, none of the platforms
and workers have incentives to alter their strategies for higher
payoff when others’ keep unchanged, which reaches the MSE.

To motivate the workers to contribute to Pareto efficiency
for platforms and then reach multi-leader Stackelberg equilib-
rium, we carefully design the incentive function Im as follows.
• First and foremost, since the incentive function is meant

for each platform n to motivate the worker m to select the
proper frame rate decision fn,m for Pareto efficiency, the
increase in each worker’s own utility uw

n,m(fn,m) needs
to be hindered. As uw

n,m(fn,m) increases with respect to
frame rate fn,m, we set the incentive value, which should
be negative to fn,m, as Î−θn,mfn,m [61]. The parameter
Î is large enough to make the incentive value positive.

• Second, with the incentive value, each worker m should
pay attention to platform n’s utility function up

n,m(fn,m).
• Last, each worker m’s own utility function uw

n,m(fn,m)
will naturally be taken into consideration.

In summary, we design the incentive function, simultaneously
considering the above 3 aspects as Im(θ·,m,f·,m) =∑N

n=1
(uw
n,m(fn,m)︸ ︷︷ ︸

worker’s utility

+ up
n,m(fn,m)︸ ︷︷ ︸

platform’s utility

+(Î − θn,mfn,m︸ ︷︷ ︸
incentive value

)). (18)

B. Incentive-based Configuration Update upon ADMM

To reach the multi-leader Stackelberg equilibrium based on
the designed incentive function, we propose an efficient two-
layer iteration-based method as shown in Fig. 3. The inner
layer focuses on updating workers’ frame rates f and the out-
er layer addresses the update of platforms’ incentive factors θ,



which together constitute MACRO. Concretely, the inner layer
guarantees the fulfillment of condition (b) for MSE, while the
outer layer ensures condition (a). For their technical details,
we sequentially present the Overview of MACRO, Update f
in Inner Layer and Update θ in Outer Layer as follows.

1) Overview of MACRO: For ease of expression, we denote
the outer layer’s iterative round as t ∈ {0, 1, 2, ...}, and denote
the inner layer’s iterative step as τ ∈ {0, 1, 2, ...}. We then
illustrate the general process of transitioning from iterative
round t to t+ 1, which includes the updates of frame rates f
in the inner layer and incentive factors θ in the outer layer:
• At each iterative round t, given the incentive factors
θt from platforms, the workers optimize their incentive
functions by adjusting their frame rate decisions f t in an
iterative manner (i.e., τ = 0, 1, 2, ...).

• Then at the next iterative round t + 1, the platforms
adjust their incentive factors θt+1 based on the updated
frame rate decisions f t, to motivate the workers to pay
more attention to the platforms’ objectives. After that,
workers further adjust their frame rate decision f t+1 in
an iterative manner (i.e., τ = 0, 1, 2, ...).

Subsequently, we further elucidate the details of the updates
in the inner layer and outer layer, which ensures the condition
(b) and (a), respectively, for MSE.

2) Update f in Inner Layer: Given the incentive factors
θt from platforms, to fulfil the condition (b) in Definition 4
for MSE, our idea is to follow Thm. 1, maximizing the sum
of all workers’ incentive utilities

∑M
m=1Im(θ·,m,f·,m) with

the constraints (9) and (11) satisfied. However, as previously
noted, the number of workers M can be very large in compar-
ison to platforms, leading to a high computational overhead.
Thus, we turn to Alternating Direction Method of Multipliers
(ADMM) [62], which can decompose the complex problem
into multiple simplified subproblems.

Under the ADMM method framework, we first construct
an augmented Lagrangian function [57] for our considered
maximization problem with equality constraints. After that,
to optimize the augmented Lagrangian function, we further
spread its high computational cost to workers and platforms,
respectively. We present the technical details as follows:
• Augmented Lagrangian Function Construction: Based

on ADMM framework [62], we build the augmented
Lagrangian function [57] as Lρ(f ,λ,µ) =

−
M∑
m=1

Im(θ·,m,f·,m)−
N∑
n=1

λn(

M∑
m=1

Rnbn,m

Fn
fn,m−Bn)

−
M∑
m=1

µm(

N∑
n=1

cn,mfn,m−Cm)+
ρ

2

N∑
n=1

|
M∑
m=1

Rnbn,m

Fn
fn,m−Bn|2,

where λ={λ1, ..., λN}, µ={µ1, ..., µM} are Lagrange
multipliers, the same as the Lagrangian function in Eq.
(12), which are used to incorporate the constraints (9)
and (11) into Lρ(f ,λ,µ) involving workers’ incentive
utilities. Besides, we use the damping factor ρ [57] to
control the convergence rate and stability for ADMM.

• Augmented Lagrangian Function Minimization: Upon the
above augmented Lagrange function, we transform the

Algorithm 2: ADMM-based Optimization for Frame Rate

Input: t,θt,f t−1,λt−1,µt−1

1 τ ← 0, (f t,0,λt,0,µt,0)← (f t−1,λt−1,µt−1);
2 while τ < τmax do

// Serial Update at Workers:
3 for worker m = 1, 2, ...,M do
4 Update f t,τ+1

·,m and µt,τ+1
m upon Eqs. (19), (20);

// Parallel Update at Platforms:
5 for platform n = 1, 2, ..., N do
6 Update λt,τ+1

n following Eq. (21);

7 τ ← τ + 1;

Output: f t,τmax ,λt,τmax ,µt,τmax .

incentive utility maximization problem with constraints
in round t to a problem of minimizing Lρ(f t,λt,µt) as

Pw
4 : minft,λt,µt Lρ(f t,λt,µt).

Notably, according to the definition of Lρ(f t,λt,µt),
finding the best solution for problem Pw

4 means that we
have to improve the platform’s social welfare and meet
the constraints (9) and (11) at the same time.

However, when the number of workers M gets larger, the
computational cost of solving problem Pw

4 will also become
higher. According to ADMM framework, we solve problem
Pw
4 in an iterative manner, i.e., iteratively updating frame rate

decisions f t,τ and Lagrange multipliers λt,τ , µt,τ (i.e., τ =
0, 1, ...). Furthermore, to spread the high computational cost,
the computation for the frame rate decision f t,τ·,m and µt,τm is
distributed to worker m, and then each platform n coordinates
the frame rate decisions f t,τn,· by updating λt,τn . We show the
updates at workers and platforms as follows:
• Serial Update at Workers: When the iterative step is
τ + 1, each worker m updates its frame rate decision
f t,τ+1
·,m to minimize Lρ(f t,λt,µt). We further simplify
Lρ(f t,λt,µt) by retaining the parts related to worker
m, thereby obtaining f t,τ+1

·,m =

argmin
ft
·,m

−Im(θt·,m,f
t
·,m)−

N∑
n=1

(λt,τn
Rnbn,m

Fn
+µt,τm cn,m)f tn,m

+
ρ

2

N∑
n=1

(
∑
j 6=m

Rnbn,j

Fn
f t,τ̃n,j +

Rnbn,m

Fn
f tn,m −Bn)2,

(19)

where τ̃ = τ + 1 if j < m, otherwise τ̃ = τ . Notably,
in the serial update process for workers, each worker m
requires the latest updated frame rate f t,τ̃·,j from another
worker j as input to update its own frame rate f t,τ+1

·,m .
Besides, each worker m further updates its Lagrange
multiplier µt,τ+1

m in the direction of gradient descent as

µt,τ+1
m = µt,τm − η(

∑N

n=1
cn,mf

t,τ+1
n,m − Cm), (20)

where η denotes the step size for the update [56] and it
controls the update speed and stability.

• Parallel Update at Platforms: When the iterative step is
τ + 1, each platform n updates the Lagrange multiplier
λt,τ+1
n in the direction of gradient descent as

λt,τ+1
n = λt,τn − ρ(

∑M

m=1
(Rnbn,m/Fn)f

t,τ+1
n,m −Bn), (21)

where we use the damping factor ρ as the step size for
the update in accordance to the ADMM framework [62].



Observably, all the platforms update their corresponding
Lagrange multipliers in a parallel manner.

As shown in Alg. 2, we implement the above procedure of
updating f in the inner layer. In line 2, τmax is set to a suffi-
ciently large number of steps allowing the objective function
to converge [63]. In lines 3-6, we spread the computational
cost of solving Pw

4 across multiple workers and platforms.
3) Update θ in Outer Layer: The outer layer is also an iter-

ation structure for updating the incentive factors θt+1 after the
frame rate f t is updated in Alg. 2. To reach the condition (a)
for MSE, which considers the Pareto efficiency for platforms,
we need to optimize the social welfare of platforms. For the
above goal, we show the details of updating incentive factors
and judging the update termination condition as follows.
• Update Incentive Factors: Recall that each worker m’s

incentive function Im consists of the worker’s utility,
platform’s utility and incentive value. To maximize the
social welfare of platforms, our idea is to update the
incentive factors in a manner that ‘offsets’ the utility of
workers. As the incentive value is set to Î − θn,mfn,m
in (18), we leverage the marginal utility of workers to
update the incentive factor as

θt+1
n,m = duw

n,m(f tn,m)/dfn,m, ∀n ∈N ,m ∈M. (22)

Intuitively, we update the incentive factor θn,m as the
first order derivative of the worker’s utility with respect
to fn,m, which ‘offsets’ the utility of workers and then
ensures the social welfare of platforms.

• Judge Termination Condition: The iteration process in the
outer layer continues until there is negligible improve-
ment in the platforms’ social welfare, i.e.,

|
∑N

n=1
U

p
n(f

t
n,·)−

∑N

n=1
U

p
n(f

t−1
n,· )| < ε, (23)

where ε is the threshold to upper-bound the changes of
social welfare between 2 consecutive iteration rounds,
and it pertains to the convergence analysis of MACRO
as detailed in Thm. 4 later.

The process of updating θ in the outer layer is illustrated in
Alg. 3, where each platform n updates its incentive factor
decision θt+1

n,· in lines 3-4. Additionally, the judgment of
update termination condition lies in line 2.

C. Theoretical Analysis

Next we analyze how MACRO reaches MSE, as demon-
strated in Fig. 3. Specifically, we present the convergence
analysis of Alg. 2, the convergence analysis of Alg. 3, and
the analysis of the convergence rate of Alg. 3 as follows.

1) Convergence Analysis of Alg. 2: Due to the fact that
Alg. 2 applies the ADMM framework to a specific domain,
i.e, the update of video analytics configurations for crowd-
sourcing, the convergence property of ADMM [63] can still
be maintained, which we show in Proposition 3. Since the
convergence proof of ADMM itself is not our contribution,
we only briefly summarize the convergence proof process of
ADMM as found in [63] here.
Proposition 3. ADMM-based Optimization for Frame Rate in
Alg. 2 can converge to the optimum for problem Pw

4 .

Algorithm 3: Incentive Mechanism MACRO for MSE
Input: Rn, bn,m, Fn, Bn, cn,m, Cm, ∀n ∈N ,m ∈M

1 t← 0, and Randomly Initialize f0, λ0 and µ0;
2 while Inequation (23) upon f t is Not Satisfied do

// Update Incentive Factors:
3 for platform n = 1, 2, ..., N do
4 Update θt+1

n,m, ∀m ∈M following Eq. (22);

// Update Frame Rate Decisions:
5 t← t+ 1;
6 Invoke Alg. 2 with Input (t,θt,f t−1,λt−1,µt−1), and

Output (f t,τmax ,λt,τmax ,µt,τmax);
7 (f t,λt,µt)← (f t,τmax ,λt,τmax ,µt,τmax);

Output: f t,θt.

Proof. Following Theorem 3.1 in [63], through Alg. 2, the
primal and dual optimality gaps [64] for Pw

4 can be proved
to converge to 0 linearly, based on which the dual sequence
is also linearly convergent to a dual optimal solution. It then
follows that the output sequence of frame rate decisions can
converge to a primal optimal solution. The complete proof is
omitted, and see Theorem 3.1 in [63] for details.

As Proposition 3 shows Alg. 2 is an ADMM process [65]
for problem Pw

4 , it can converge with KKT condition [66] met.
When Alg. 2 converages, e.g., in iterative round t + 1, KKT
condition indicates that ∀n ∈N ,m ∈M,

dLρ(f t+1,λt+1,µt+1)/dfn,m = 0. (24)

Intuitively, Eq. (24) means that Alg. 2 obtains the optimal
frame rate in the inner layer, based on which we will further
analyze the convergence of Alg. 3 later.

2) Convergence Analysis of Alg. 3: We then analyze the
convergence of Alg. 3 and present it in Thm. 2.
Theorem 2. MACRO for MSE in Alg. 3 can converge to MSE.
Concretely, the social welfare for platforms always rises from
iteration round t to t+ 1 before convergence.
Proof. Expanding Eq. (24), we easily obtain

d(−Im(θt+1
·,m ,f t+1

·,m )−
∑N

n=1
λt+1
n (Rnbn,m/Fn)f

t+1
n,m)/dfn,m

+
d( ρ

2

∑N
n=1|

∑M
j=1(Rnbn,j/Fn)f

t+1
n,j )−Bn|2)

dfn,m
−µt+1

m cn,m=0,

(25)

∀n ∈ N ,m ∈M. We then incorporate the incentive utility
function (18) and the updated incentive factor (22) into (25),
and multiply (f t+1

n,m − f tn,m) on the both sides. We obtain

du
p
n,m(f t+1

n,m)

dfn,m
(f t+1
n,m − f tn,m) + λt+1

n

Rnbn,m

Fn
(f t+1
n,m − f tn,m)

− ρ|
M∑
j=1

(Rnbn,m/Fn)f
t+1
n,j −Bn|(Rnbn,m/Fn)(f

t+1
n,m−f tn,m)

= (
duw
n,m(f tn,m)

dfn,m
−

duw
n,m(f t+1

n,m)

dfn,m
−µt+1

m cn,m)(f t+1
n,m−f tn,m).

(26)

Besides, at each iteration round t, Alg. 2 in inner layer can
coverage, and the constraints (9) and (11) are satisfied as∑M

m=1
(Rnbn,m/Fn)(f

t+1
n,m − f tn,m) = Bn −Bn = 0, (27)∑N

n=1
cn,m(f t+1

n,m − f tn,m) = Cm − Cm = 0. (28)

We combine equations (27) and (28) into (26) summed up for
each n and m, and it can be obtained as



∑N

n=1

∑M

m=1
(dup

n,m(f t+1
n,m)/dfn,m)(f t+1

n,m − f tn,m)

=

N∑
n=1

M∑
m=1

(
duw
n,m(f tn,m)

dfn,m
−

duw
n,m(f t+1

n,m)

dfn,m
)(f t+1

n,m − f tn,m).
(29)

As up
n,m(f tn,m) is concave, the right side of (29) ≥ 0, and∑N

n=1

∑M

m=1
(du

p
n,m(f t+1

n,m)/dfn,m)(f t+1
n,m − f tn,m) ≥ 0. (30)

Based on the concavity of up
n,m(f tn,m) and (30), we have∑N

n=1

∑M

m=1
u

p
n,m(f t+1

n,m)−
∑N

n=1

∑M

m=1
u

p
n,m(f tn,m) ≥ 0, (31)

which shows that
∑N
n=1 U

p
n(f t+1

n,· ) ≥
∑N
n=1 U

p
n(f tn,·), and it

means that platforms’ social welfare always rises from round
t to t+ 1. To make ≤ in (31) be =, it is satisfied:

(
du

p
n,m(f tn,m)

dfn,m
−

du
p
n,m(f t+1

n,m)

dfn,m
)(f t+1

n,m−f tn,m) = 0. (32)

We finally combine equation (32) into (26) and obtain

dup
n,m(f t+1

n,m)/dfn,m + λt+1
n Rnbn,m/Fn − µt+1

m cn,m

+ρ|
∑M

j=1
(Rnbn,m/Fn)f

t+1
n,j −Bn|(Rnbn,m/Fn) = 0.

(33)

which indicates that f t+1 = f t = f∗, and platforms’ social
welfare will converge to reach the PE (i.e., condition (a) in
Definition 4). As Proposition 3 guarantees condition (b) in
Definition 4, Alg. 2 can finally converge to MSE.

3) Convergence Rate Analysis of Alg. 3: Based on the
convergence of Alg. 3, we further analyze its convergence
rate and present it in Thm. 3.

Theorem 3. The MACRO Mechanism for MSE in Alg. 3 can
converge linearly, and the convergence rate does not depend
on the number of platforms N and workers M .

Proof. Based on L(f ,λ,µ) in problem Pp
3, we define the

augmented Lagrangian function L̃(f ,λ,µ) as follows:

L̃(f ,λ,µ) = L(f ,λ,µ) +
ρ

2

N∑
n=1

|
M∑
m=1

Rnbn,m

Fn
fn,m−Bn|2. (34)

We use f∗, λ∗ and µ∗ to represent the frame rate decision
and corresponding Lagrangian multipliers when Alg. 3 have
reached MSE. Similar to (25), we get the followings:
N∑
n=1

λtn(
M∑
m=1

Rnbn,m

Fn
f tn,m−Bn)−

ρ

2

N∑
n=1

|
M∑
m=1

Rnbn,m

Fn
f tn,j−Bn|2

+
∑M

m=1
µtm(

∑N

n=1
f tn,mcn,m − Cm) = 0,

(35)

N∑
n=1

λ∗n(
M∑
m=1

Rnbn,m

Fn
f∗n,m−Bn)−

ρ

2

N∑
n=1

|
M∑
m=1

Rnbn,m

Fn
f∗n,j−Bn|2

+
∑M

m=1
µ∗m(

∑N

n=1
f∗n,mcn,m − Cm) = 0,

(36)

N∑
n=1

λtn

M∑
m=1

Rnbn,m

Fn
(f∗n,m−f tn,m)+

M∑
m=1

µtm

N∑
n=1

cn,m(f∗n,m−f tn,m)

−ρ
∑N

n=1

∑M

m=1
(Rnbn,m/Fn)((Rnbn,m/Fn)f

t
n,j−Bn) = 0.

(37)

Besides, because of the strong concavity [67] of the platform’s
utility function, there exists a δ > 0 such that
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n=1

∑M

m=1
up
n,m(f∗n,m) ≤

∑N

n=1

∑M

m=1
up
n,m(f tn,m)+

N∑
n=1

M∑
m=1

du
p
n,m(f tn,m)

dfn,m
(f∗n,m−f tn,m)−

N∑
n=1

M∑
m=1

δ

2
|f∗n,m−f tn,m|2.

(38)

We plus (36) on the left side of (38), and plus (35) and (37)
on the right side, and we obtain that L̃(f∗,λ∗,µ∗)

≥L̃(f t,λt,µt)+(δ/2)||f∗−f t||22+ET(∇f L̃(f t,λt,µt))T(f∗−f t)E

≥min
f ′
{L̃(f t,λt,µt)+

δ

2
||f ′−f t||22+ET(∇f L̃(f t,λt,µt))T(f ′−f t)E}

=L̃(f t,λt,µt)− (1/2δ)||∇f L̃(f t,λt,µt)||22,

where E is a unit-column vector. Then we further have
||∇f L̃(f t,λt,µt)||22 ≥ 2δ(L̃(f t,λt,µt)− L̃(f∗,λ∗,µ∗)). (39)

Upon the convexity of L̃(f ,λ,µ) and the Lipschitz condition
[67] with parameter κ for uw

n,m(fn,m), L̃(f t,λt,µt)

≥L̃(f t+1,λt+1,µt+1)+
∑N

n=1

∑M

m=1
((
∂L̃(f t+1,λt+1,µt+1)

∂fn,m
)

× (1/κ)(duw
n,m(f t+1

n,m)/dfn,m − duw
n,m(f tn,m)/dfn,m)).

(40)

Based on (25), incorporating (39) into (40), we finally get
L̃(f t+1,λt+1,µt+1)− L̃(f∗,λ∗,µ∗)
L̃(f t,λt,µt)− L̃(f∗,λ∗,µ∗)

≤ 1−
2δ

κ
, (41)

which shows that the MACRO mechanism for MSE in Alg. 3
converges linearly. To satisfy inequation (23) for the conver-
gence of Alg. 3, we get the required iteration round

t =
log2(L(f0,λ0,µ0)− L(f∗,λ∗,µ∗))− log2(εκ/(2δ))

log2(1/(1− 2δ/κ))
, (42)

where f0, λ0 and µ0 are the initial frame rate decision and
Lagrangian multipliers, and the required iteration round for
convergence does not depend on N and M .

Conclusively, to enhance comprehension, a roadmap of the
theoretical analysis for MACRO is shown in Fig. 4, elucidating
the relationships among all problems, algorithms, propositions
and theorems discussed in this work.

V. EXPERIMENTS AND RESULT ANALYSIS

A. Experiment Settings

Our testbed-based experiments are conducted on Raspberry
Pi and Jetson Xavier, acting as platforms and workers. Specifi-
cally, platforms implemented based on Raspberry Pi wirelessly
transmit videos from datasets PANDA [43] and AICity [68] to
workers, characterized as diverse analytics models in {yolov7,
yolov7-x, yolov7-d6, yolov7-e6e} deployed on Jetson Xavier.
Besides, platforms and workers wirelessly exchange parame-
ters, including incentive factors and frame rate decisions. Mea-
sured by AITEK AWE2101 [53], the energy consumption for
computation is uniformly set as 5 J per frame, and the trans-
mission energy consumption is γd

m ∼ N(5, 0.5)×10−6 (J/bit).
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The revenues Gn and ωm are generated based on dataset Sales
Product [69]. According to [33, 55], the bandwidth budget Bn
is set in [10, 25] and computation capacity Cm is set in [3, 21].

In our experiments, we concentrate primarily on the task of
object detection [70], a prevalent video analytics task. For each
object detection task dispatched from crowdsourcing platform
n to worker m, we evaluate the accuracy as follows. Taking
the maximum frame rate Fn = 30 as an example, when the
frame rate decision fn,m is set to 15, it implies that the sam-
pling rate is 0.5. Consequently, only the frames with even ids
(starting from frame id 0) will be detected, while the frames
with odd ids will adopt the detection results of the preceding
even-numbered frame as their own. The detection results for
each frame i is denoted as LDet

i , a list of bounding boxes. In
addition, we capture the detection results as ground truth LGT

i

by setting the frame sampling rate to 1. For each bounding box
bbxDet in LDet

i , we judge whether there exists another bounding
box in LGT

i such that the 2 bounding boxes’ Intersection Over
Union (IOU) [71] exceeds a preset threshold (e.g., 80%). If
such a bounding box exists, we classify bbxDet as True Positive
(TP) [72]. We use tpi to denote the number of TP bounding
boxes in frame i. Then the F1-score [47] based accuracy for
the above object detection task is evaluated as

an,m = Ei[
2 · precision · recall
precision + recall

] = Ei[
2 · tpi

len(LDet
i ) + len(LGT

i )
], (43)

where len(L) calculates the number of bounding boxes in L,
and E[·]i means the average value for all frames.

We compare our mechanism with other methods for video
analytics crowdsourcing as follows: LOL [25] only considers
the conflicts among workers; Crowd2 [26] only considers the
conflicts among multiple platforms and among multiple wor-
kers; CSPW [28] only considers the Conflicts between Single
Platform and multiple Workers; RAN serves as a trivial base-
line in a RANdomized way of determining configurations.

B. Experiment Results

Convergence for Pareto Efficiency. We show the conver-
gence of Alg. 1 based on the dual ascent method in Fig. 5.
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Notably, at about the 15th iteration round, the frame rate deci-
sion, accuracy and energy for each platform all keep a steady
state, which indicates the convergence of Alg. 1. Concretely,
as demonstrated in Fig. 5(a), after Alg. 1 converges, platform 1
selects the frame rate of 20 fps, and platform 2 selects 18 fps.
However, the accuracy and energy consumption for platform
1 are lower than platform 2, as shown in Figs. 5(b) and 5(c),
since platform 1 may choose a worker with the energy-saving
mobile device running a low-resolution model, which verifies
the heterogeneity of video analytics upon crowdsourcing. We
then show the platforms’ PE obtained from Alg. 1 in Fig. 5(d).
We notice that when each platform changes its frame rate to
optimize its own utility, the social welfare will be decreased,
which has a negative impact on others. Hence, each platform
cannot improve its own utility unless others’ utility is reduced,
and it is consistent with the definition of PE. We further vary
the values of Bn and Cm and observe their effects on the con-
vergence of Alg. 1 in Fig. 6. When Bn is increased from 10 to
25, the social welfare obtained by Alg. 1 is improved as shown
in Fig. 6(a). It is because each platform has more bandwidth
budget to increase its frame rate decision for higher accuracy,
thus resulting in higher profit. However, with the rise of Bn,
we observe that the increase rate of social welfare gets slower
due to the fact that when the bandwidth budget is high enough,
the profits cannot rise any further. Similarly, when Cm varies
from 3 to 21, the increase rate of social welfare slows down
with sufficient computation resources, as shown in Fig. 6(b).

Effectiveness of ADMM. We demonstrate the convergence
of ADMM-based Alg. 2 in Fig. 7(a). When Alg. 2 is running,
given the incentive factors θ from platforms, the workers se-
quentially update their frame rates to optimize a series of sub-
problems in Eq. (19), which are decoupled from problem Pw

4

by ADMM. Notably, at about the 10th iteration step, Alg. 2,
serving as the inner layer of MACRO, converges to the maxi-
mum of all workers’ incentive utilities. Moreover, we compare
the incentive utilities obtained from Alg. 2 with the optimum,
as shown in Fig. 7(b). Since Alg. 2 based on ADMM decou-
ples the complex problem of maximizing the incentive utilities
of all workers into multiple subproblems, it can lead to a de-
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Fig. 9. Scalability of MACRO on Bandwidth Budget, Computation Capacity, Number of Platforms and Number of Workers Compared with Other Methods

crease in incentive utilities. However, from Fig. 7(b), we see
that ADMM-based Alg. 2 can obtain almost as much incentive
utilities as the optimum. In addition, compared to the modified
Alg. 2 without ADMM, which causes a computing overhead of
around 200s when the number of workers is 50, the overhead
of ADMM-based Alg. 2 keeps stable, as shown in Fig. 7(b),
highlighting the effectiveness and efficiency of ADMM.

Convergence for MSE. We further show that the utility for
platforms and incentive utility for workers can both coverage
to MSE in Fig. 8. As shown in Figs. 8(a) and 8(b), the wor-
kers’ incentive utilities and platforms’ utilities all converge at
about the 10th iteration round and then remain stable, which
verifies the convergence of MACRO described in Theorem 2.
When Alg. 3 has converged, we further change each worker’s
frame rate decision and observe its effect on the total incentive
utilities. We find that each worker cannot adjust its frame rate
to improve its incentive utility without reducing others’, as de-
monstrated in Fig. 8(c). Moreover, Fig. 8(d) shows that each
platform cannot change its incentive factor to raise its utility.

Scalability of MACRO. We finally illustrate the scalability
of MACRO with respect to different bandwidth budgets, com-
putation capacities, numbers of platforms and numbers of wor-
kers compared with other approaches in Fig. 9. Similar to the
results in Figs. 6(a) and 6(b), when the values of Bn and Cm
rise, platforms’ social welfare also increase, but the rate of in-
crease slows down, as shown in Figs. 9(a) and 9(b). Moreover,
we change the number of platforms and workers and compare
MACRO with other methods, and the results are illustrated in
Figs. 9(c) and 9(d). Since LOL and Crowd2 only take the con-
flicts among workers and among platforms into consideration,
their social welfare is lower than CSPW when there exist the
conflicts between platform and workers. Nevertheless, the dis-
advantage of CSPW is that it cannot tackle the conflicts bet-
ween multiple platforms and workers, which are well solved
by MACRO. We observe that when the number of platforms
varies from 4 to 20 and the number of platforms varies from 10
to 50, MACRO always outperforms the other methods since it
simultaneously considers the conflicts among workers, among
platforms, and between workers and platforms.

Furthermore, we test MACRO across various video content
types and resolutions, as illustrated in Fig. 10. Concretely, in
Fig. 10(a), we focus on low-speed and high-speed vehicle mo-
vements. We observe that the social welfare achieved by all
algorithms, including MACRO, is higher for low-speed videos
compared to the high-speed. This is because high-speed videos
require higher configurations to achieve comparable analytical
accuracy-based benefits. However, due to the bandwidth con-
straints on platforms, it is infeasible to infinitely increase the
frame rates, which leads to lower social welfare obtained from
high-speed videos. In Fig. 10(b), we vary the video resolutions
and compare Alg. 2 in MACRO with the optimum (as defined
in Fig. 7(b)). As the resolution increases from 360p to 1080p,
we find that the incentive utilities for workers also increase.
The reason is that the compensations to workers are related to
the energy consumption on their mobile devices, which is aff-
ected by the amount of video data. Thus, videos with higher
resolutions result in higher incentive utilities. To summarize,
MACRO improves the social welfare by 26% on average.

Overhead of MACRO. We further investigate the compu-
tational cost of MACRO compared with LOL and Crowd2,
which are mainly designed for video analytics crowdsourcing.
We focus on the time cost associated with decisions on worker
selection and video analytics configuration, excluding the time
taken to run video analytics models. As shown in Fig. 11(a),
the time cost of MACRO remains relatively stable, when we
vary the number of platforms. The reason is that the bulk of
MACRO’s computations (as shown in Fig. 7(b)) are distributed
across multiple platforms and workers via ADMM, with com-
putations on platforms being executed in parallel, thus saving
time. Besides, as showcased in Fig. 11(b), when the number of
workers increases, there is an increase in MACRO’s time cost,
which is related to the serial computations performed on the
workers in ADMM framework. However, we believe that the
advantage of ADMM lies in its ability to distribute the high
computational overhead of a complex problem. Additionally,
as the number of platforms increases, we observe that the com-
putation time for LOL remains stable. This is because it uses a
single-agent multi-armed bandit method that can be executed
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on multiple platform in parallel. When the number of workers
increases, the time for LOL to explore more workers also rises.
For Crowd2, which models worker selection as a multi-knap-
sack problem, the computational cost increases continuously
with both the number of platforms and workers. In summary,
we believe that although MACRO has a higher computational
cost compared to other methods, it only needs to be run once at
the beginning of the video analytics crowdsourcing scenario to
decide the worker selection and video analytics configuration.
Therefore, a decision time of around 10 seconds is considered
acceptable in exchange for the benefits in social welfare it im-
proves, as shown in Fig. 9, compared with other methods.

VI. RELATED WORK

Worker Recruitment in Crowdsourcing. During the past
decade, a substantial body of research has concentrated on
crowdsourcing [14, 15, 25, 26, 38–40, 73–76]. Among them,
some studies have addressed the problems of worker recruit-
ment. For example, Song et al. [38] selected the optimal com-
bination of workers minimizing the cumulative empirical en-
tropy via combinatorial multi-armed bandit. Wang et al. [40]
proposed a privacy-preserving framework for online task as-
signment and worker recruitment to minimize total travel dis-
tances. In summary, the aforementioned studies primarily fo-
cus on designing methods for recruiting crowdsourcing work-
ers for generalized tasks. In contrast to them, our MACRO
and other studies [25, 26] have considered the approaches to
selecting workers for specific video analytics tasks. Different
from LOL [25], which formulates a mixed integer program to
select the most suitable workers for maximum profit via vola-
tile multi-armed bandit-based Lyapunov optimization method,
MACRO considers workers recruited from multiple platforms.
Though Crowd2 [26] tackles the conflicts between platforms
for worker recruitment, MACRO simultaneously considers the
conflicts among workers, among platforms, and between plat-
forms and workers, filling an existing gap in research.

Incentive Mechanism with Game Theory. Some related
works have explored incentive mechanisms with game theory
[28, 36, 41, 42]. For example, Xu et al. [36] presented a novel
incentive mechanism with multi-armed bandit and three-stage

Stackelberg game to achieve a multi-win situation. However,
the related studies [28, 36] have only considered the competi-
tive dynamics between a single platform and multiple workers,
employing Stackelberg game theory and incentive strategies to
maximize their respective benefits. Different from them, our
MACRO further considers the conflicts between multiple plat-
forms using multi-leader game. Additionally, some of related
studies [41, 42] have delved into the competitive relationships
between numerous users and multiple task initiators or service
providers. For example, Zhan et al. [41] investigated the DRL-
based approach to assigning profitable amount of incentives to
multiple task initiators and mobile users. However, their me-
thodologies cannot be directly applied to the context of crowd-
sourcing for video analytics tasks, where we have investigated
the conflicting interests between workers and platforms when
selecting the video analytics configurations. Furthermore, the
aforementioned studies do not account for the scenarios with
a large number of workers, for which MACRO introduces an
ADMM-based method to reduce computational complexity.

Configuration Selection for Video Analytics. Numerous
existing studies [22–24, 48] focus on optimizing the comple-
tion of video analytics tasks by adjusting the configurations.
For example, Zhang et al. [22] studied the impact of batch size
on video transmission and analysis, based on which they pro-
posed a DRL-based method for the batch size adaptation. To
adaptively adjust the configurations (e.g., resolution), ASVA
[23] was proposed as a streaming framework designed for live
video analytics. To summarize, prior works have studied the
adjustment of various configurations, including batch size of
video data [22], video resolution [23], video frame rate [24],
and bandwidth consumption [48]. However, there exists only
one decision-maker to determine the configuration in each of
the above studies. In contrast, MACRO addresses a scenario
where both crowdsourcing platforms and workers possess the
capability to select the optimal video analytics configuration
for their own utilities, which is challenging. Besides, the opti-
mization objectives for adjusting configurations in the above
studies are also different, such as video analytics accuracy
[22, 24], timeliness [23], resource consumption [48], and so
on. Different from them, MACRO needs to simultaneously
consider the platforms’ accuracy-based utility and workers’
energy-related utility, which are in conflict with each other.

VII. CONCLUSION

To simultaneously solve inter-platform and platform-worker
conflicts for heterogeneous video analytics tasks upon crowd-
sourcing, we design an incentive mechanism MACRO based
on multi-leader game. A dual ascent-based method is proposed
to determine proper video analytics configurations for multi-
platform game and reach the Pareto efficiency. Furthermore,
for multi-leader game involving platform-worker conflicts, we
design the incentive function and its incentive factor updating
strategy, and present an ADMM-based incentive maximization
method. Rigorous proofs show MACRO’s linear convergence
to the multi-leader Stackelberg equilibrium, and trace-driven
experiments testify its great performance compared to others.
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