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Abstract—Computation offloading makes sense to the interac-
tion between users and compute-intensive applications. Current
researches focused on deciding locally or remotely executing an
application, but ignored the specific offloading proportion of
application. A full offloading cannot make the best use of client
and server resources. In this paper, we propose an innovative
reinforcement learning (RL) method to solve the proportional
computation problem. We consider a common offloading scenario
with time-variant bandwidth and heterogeneous devices, and the
device generates applications constantly. For each application, the
client has to choose locally or remotely executing this application,
and determines the proportion to be offloaded. We formalize the
problem as a long-term optimization problem, and then propose
a RL-based algorithm to solve it. The basic idea is to estimate the
benefit of posible decisions, of wihch the decision with the maxi-
mum benefit is selected. Instead of adopting the original Deep Q
Network (DQN), we propose Advanced DQN (ADQN) by adding
Priority Buffer Mechanism and Expert Buffer Mechanism, which
improves the utilization of samples and overcomes the cold start
problem, respectively. The experimental results show ADQN’s
high feasibility and efficiency compared with several traditional
policies, such as None Offloading Policy, Random Offloading
Policy, Link Capacity Optimal Policy, and Computing Capability
Optimal Policy. At last, we analyse the effect of expert buffer size
and learning rate on ADQN’s performance.

Index Terms—Computation offloading, Advanced Deep Q
Network, Expert Buffer Mechanism

I. INTRODUCTION

The rise of 5G has greatly strengthened the connection

between humans and machines. Meanwhile, compute-intensive

and delay-sensitive applications, such as interactive gaming,

image/video processing, augmented/virtual reality and face

recognition, are becoming popular on mobile devices. Thanks

to the emergence of Mobile Edge Computing (MEC) [1]–[3],

the data and computation are pushed away from centralized

cloud computing infrastructures to the logical edge of a

network, thereby enabling analytics and knowledge generation

to occur closer to the mobile users. MEC enhances the

computation capability at the edge of mobile networks by

deploying high-performance edge servers.

Although computation offloading has been extensively stud-

ied, there is still no unified method to solve this problem,

which is largely due to the heterogeneity of edge devices and

the time-variant nature of the network. Existing researches on

computation offloading only consider the tradeoff between cost

Fig. 1. Illustration of computing offloading. Users in the ellipse are accessible
to the corresponding base stations, and user can offload a percentage of the
current application to one of these stations.

and performance to determine whether the application should

be executed locally or offloaded to the edge server. To take full

advantage of the resources of mobile devices and edge servers,

instead of only choosing either locally or remotely executing

an application, we need to consider a partial offloading with

a specific percentage. In [4] [5], the authors considered multi-

frame object detection applications, and compared the per-

formance of full and partial offloading. Experimental results

showed partial offloading has a significant QoE (i.e. the delay

or energy consumption) improvement.

In this paper, we re-examine the computation offloading

problem. We consider a real-time multi-user multi-server of-

floading scenario, where the network and available resources

of servers and clients are time-variant. As Figure 1 shows, the

mobile base stations endowed with cloud-like computing and

storage capability are densely distributed close to mobile users,

and the user devices can offload computing task to the MEC

servers through wireless channels. Indeed, the MEC server can

be regarded as a substitute of the cloud [6] [7]. Users in the

ellipse are accessible to the corresponding base stations, and

user can offload a percentage of the current application to one

of these stations. For example, user U2 is in the coverage

of base station E1, E3 and E4. For each application at

any slot t, the mobile device has to decide not only which

server the application should be offloaded to, but also the

proportion to be offloaded. The operation of mobile device

can be viewed as a continuous decision-making process, which

is likely to be solved by Reinforcement learning. Therefore,
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we adopt a reinforcement learning method (i.e., ADQN) to

solve this offloading problem, and experimental results show

its feasibility and efficiency. To our best knowledge, we are

the first to propose proportional computing offloading using

DRL. Our main contributions are summarized as follows:

• We formalize the computation offloading problem as a

long-term optimization problem, which aims to minimize

the weighted sum of delay and energy consumption.

• We propose Advanced Deep Q Network algorithm

(ADQN) to solve the offloading decision and proportion

determination problem. We modify the DQN by adding

Priority Replay Buffer and Expert Buffer Mechanism.

• We design a simulator to obtain enumerous training data

to train ADQN. The results show that our proposed algo-

rithm can significantly reduce the weighted sum of delay

and energy consumption compared to other policies.

The remainder of this paper is organized as follows. Section

II introduces the related work of computation offloading and

deep reinforcement learning. Section III presents the system

model and problem formulation. Section IV introduces the

algorithm ADQN. Section V shows the experiment evaluation,

and conclusions follow in VI.

II. RELATED WORK

In this section, we review the related work on facets of

computation offloading and machine learning-based schemes.

A. Facets of Computation Offloading

Computation offloading is the research focus in both mobile

cloud computing (MCC) [6] [7] and mobile edge computing

[1]–[3], which all concern how to make offloading decisions.

Various works have studied different facets of this problem,

e.g., energy efficient [8]–[11], resource allocation [12] [13],

and some specific mobile applications such as AR/VR [5],

[14]–[16]. In [11], the author adopted a big.LETTLE ar-

chitecture, and aimed to minimize the energy consumption

through better computation offloading policy. In [12], the

author considered a multi-user mobile cloud computing system

with a computing access point (CAP), where each mobile

user has multiple independent tasks that may be processed

at local/CAP/remote cloud. In [5], the author designed a

framework that tied together front-end devices with more

powerful backend “helpers” (e.g., home servers) to allow deep

learning to be executed locally or remotely in the cloud/edge.

In these above studies, the authors formulated the offloading

problem as a NP-hard problem, and solved it through the

heuristic algorithm. Nevertheless, these algorithms can not

guarantee their robustness and can only be applied to specific

scenarios, and thus they face a huge limitation.

B. Machine Learning-based Schemes

With the expansion of the Artificial Intelligence field, re-

seachers start attempting to solve the computation offloading

problem by means of Machine Learning, and Reinforcement

Learning (RL) [17] is the mainstream. Taking the future reward

feedback from the environment into consideration, the RL

agent can adjust its policy to achieve the best long-term

goal. In [18], the author regarded computation offloading

as a minority game, which consists of players (i.e., mobile

devices), policy (i.e., locally or remotely executing tasks), and

reward (i.e., QoE). Then, the Q-learning algorithm is adopted

to solve this problem. In [19], the author designed a single-

user task delay-optimal scheduling policy based on the theory

of MDP, which controled the local processing, transmission

units, and the task buffer queue delay. However, it is difficult

to obtain the actual probability distribution of matrix P . In

[20], the burgeoning DQN algorithm realized highly intelligent

decision-making. In [21], the author considered a multi-user

MEC system, and proposed RL-based optimization framework

to tackle computation offloading and resource allocation for

MEC. Nevertheless, the author only applied the original DQN

without any modification or innovation. In [22] [23], the author

adopted deep reinforcement learning to optimize the computa-

tion offloading performance in the virtual edge computing sys-

tem, but the author just made assumptions instead of exploring

facts in many details. Of course, the technology that applies

reinforcement learning to edge computing is also maturing.

In [24], the authors proposed adaptive video streaming with

pensieve, which greatly optimized network links and improved

service quality. In [25], the author achieved efficient manage-

ment of the edge server with deep reinforcement learning.

In [26], the authors proposed Experience-driven Networking
based on DRL, which significantly reduces end-to-end delay

and consistently improves the network utility.

Current studies focus more on coarse-grained offloading (i.e.

full offloading or total offloading) [12] [18]. Due to its con-

strained capability to coordinate the local and server resources,

the fine-grained offloading [8] [27] [28](i.e., partial offloading

or dynamic offloading) needs further in-depth study. In view

of these above problems, we are committed to designing a

flawless Deep Reinforcement Learning model to solve the

computation offloading problem in the remainder of this paper.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present our models, including the

network model, application model, local execution model and

remote execution model. Then, we present our long-term

optimization problem.

A. Network Model

In the current MEC architecture, the edge servers are

in charge of managing the resources and virtualizing the

resources by means of VM, and the network deployment is

based on the orthogonal frequency division multiple-access

(OFDMA). We assume the total bandwidth B is divided into

N subcarriers. The number of current available subcarriers is

k ∈ N = {1, 2, · · · , N}. In order to better reflect the dynamic

nature of the network condition, we divide the network links

into upstream links and downstream links. Let pu, ps denote

the transmission capacity for the mobile device and edge

server, repectively. Assuming that the downlink and uplink

transimissions experience the same noise, we can get the
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TABLE I
NOTATIONS USED IN OUR FORMULATION.

hul, hdl the channel fading coefficient for uplink and downlink

N0, B the noise power and total bandwidth

gul, gdl the target BER for uplink and downlink

βl the path loss exponent

B,W the total bytes of input data and total workload

ω
the number of clock cycles a microprocessor

will perform per byte cycles/byte(cpb)

xij , yij the index of the target server and target proportion

Pyij

the percentage of application Aij that is

offloaded to the edge server Exij

f
(l)
ij the local computing capability

el the energy consumption per byte

t
(l)
q the local queuing delay

f
(r)
xij

the computing capability of Exij

er the energy consumption per byte of servers

t
(r)
q the remote queuing delay

λ, β
the weight factors to balance the delay

and energy consumption

s, a the current state and action

s′, a′ the current state and action

s, a the next state and action

α the learning rate

γ the incentive decay coefficient

maximum achievable rate (in bps) for uplink and downlink

over an additive white Gaussian noise (AWGN) channel as

rul = k
B

N
log

(
1 +

pu |hul|2
Γ (gul) dβlN0

)
, (1)

and

rdl = k
B

N
log

(
1 +

ps |hdl|2
Γ (gdl) dβlN0

)
, (2)

where d is the distance between the mobile device and server,

N0 is the noise power, βl is path loss exponent, hul, hdl are

the channel fading coefficient for uplink and downlink, and

gul, gdl are the target BER (i.e., bit error rate) for uplink and

downlink, respectively.

B. Application Model

The mobile device generates a compute-intensive applica-

tion G at each time slot t. Based on [29] [30], the application

G can be divided into multiple mutually independent tasks

(i.e., a fine-grained partitioning) {c1, c2, · · · , cn}, and each

component can be executed independently locally or offloaded

to the edge servers. For example, a real-time video analytics

application needs to analyze real-time images from different

cameras at a single time. Because the pictures taken by differ-

ent cameras are independent, we can divide this application

into multiple independent tasks, and each task analyzes the

pictures from the same camera.

We measure the workload of application according to the

scale of input data. We denote the workload as W , and total

bytes of input data as B. For a given B, we can calculate

W = ωB, where ω in CPU cycles/byte(cpb) indicates the

number of clock cycles a microprocessor will perform per byte

of data processed. The parameter ω depends on the nature of

the application, e.g., the time and space complexity. Therefore,

we can get the proportion of each task based on their bytes,

namely {p1, · · · , pn} ,
∑n

i=1 pi = 1.

C. Local and Remote Execution Model

Without loss of generality, we choose the delay and en-

ergy consumption as the main indicators. The delay includes

computing delay, data transmission delay and queuing delay.

As Figure 2 shows, we roughly divide application G into

multiple independent tasks {c1, c2, · · · , cn}, and calculate

the {p1, · · · , pn} ,
∑n

i=1 pi = 1. Then, we divide these

tasks into two parts, and calculate their proportion. We use

{(P1, Q1), (P2, Q2), · · · , (PN , QN )} to denote the percentage

of workload executed at server or local device, where Pi +
Qi = 1. Assuming the user set is {U1, U2, · · · , UZ}, the edge

server set is M = {E1, E2, · · · , EM}, and time T is divided

into slots {t1, t2, · · · , ts}. For any user Ui at each time slot

tj , the mobile device of Ui has to handle a different application

Aij . If no application Aij is generated, we set Bij = 0.

Let xij denote the index of the target server, and yij denote

the index of target proportion, then Pyij is the percentage of

application Aij that is offloaded to the edge server Exij
, where

xij ∈ {1, 2, · · · , M}, yij ∈ {1, 2, · · · , N}. In this article,

application execution consists of two parallel components,

namely local exection and remote execution. We consider three

metrics for each application, i.e. transmission delay, computing

delay, and energy consumption.

1) Local execution: The local execution model is relatively

simple, and we just consider local computing delay and energy

consumption. Therefore, for user Ui at time slot tj , the delay

D
(l)
ij and energy consumption E

(l)
ij of local execution are

T
(l)
ij = D

(l)
ij + t(l)q =

wBijQyij

f
(l)
ij

+t(l)q , (3)

and

E
(l)
ij = elBijQyij

, (4)

where f
(l)
ij is the local computing capability, el is the energy

consumption per byte, t
(l)
q is the local queuing delay, Bij is

the size of input.

2) Remote execution: The remote execution model in the

edge server is much more complex than that in the mobile

device, because the data transmission dalay in the network

must be taken into account, especially for applications with

large data scale. In practice, the computing delay, computing

energy consumption, and queuing delay in the servers are

much smaller than those in mobile devices. Therefore, we can

calculate the delay D
(r)
ij and energy consumption E

(r)
ij of local

execution as

T
(r)
ij =D

(r)
ij +t(r)q =

wBijPyij

f
(r)
ij

+t(r)q +
BijPyij

r
(ij)
ul

+
wsBij

r
(ij)
dl

, (5)

and

E
(r)
ij = erBijPyij , (6)
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Fig. 2. System Overview. At each time slot, mobile device divides an
application into several independent components and decides the target server
and target proportion via ADQN, which continuously updates the network
parameters by means of batch gradient descent.

where f
(r)
xij is the computing capability of Exij

, er is the

energy consumption per byte of servers, and t
(r)
q is the remote

queuing delay. ωs is the discount coefficient, and ωsBij is the

bytes of computed result. By synthesizing the above analysis

of these two models, we can get the total weighted sum of

delay and energy consumption

Wij = λmax
(
T

(r)
ij , T

(l)
ij

)
+ β

(
E

(r)
ij + E

(l)
ij

)
, (7)

where λ, β are the weight factors to balance the delay and

energy consumption, λ, β ∈ (0, 1). In practice, users prefer to

pursue a better latency, and thus we are more inclined to set

λ to a number bigger than β.

D. Problem Formulation

We have established an execution model for a single applica-

tion, and now we focus on executing a series of applications as

Figure 2 shows. Time T is divided into slots {t1, t2, · · · , ts}.

For any user Ui at each time slot tj , the mobile device of Ui

has to handle a different application Aij . We aim to find the

optimal xij and yij . Therefore, the problem P1 is formulated

as follows:

P1 : min
∑
tj∈T

[
λmax

(
T

(r)
ij , T

(l)
ij

)
+β

(
E

(r)
ij +E

(l)
ij

)]

s.t. f (r)
xij

≤ F (r)
xij

, f (l)
xij

≤ F (l)
i

r
(ij)
ul ≤ R(i)

ul , r
(ij)
dl ≤ R(i)

dl

xij ∈ {1, 2, · · · , m} , yij ∈ {1, 2, · · · , n} ,

(8)

where F (r)
xij , F (l)

i are the maximum available computing capa-

bility of Exij
and Ui, R(i)

ul and R(i)
dl are the maximum available

uplink and downlink capacity, respectively.

Apparently, problem P1 is an integer programming problem,

which aims to find optimal values of xij and yij , and then gets

the target server Exij
and target proportion Pyij

. However, it

is a NP-hard problem extended from the Knapsack problem.

Instead of solving this NP-hard problem by conventional

optimization methods, we propose a reinforcement learning-

based method to get the optimal Exij and Pyij directly.

IV. ALGORITHM DESIGN

In this section, we give a detailed elaboration on the

reinforcement learning-based method. Firstly, we do some

preliminaries about defining the specific three elements of

Reinforcement Learning in the offloading scenario. Then, We

briefly introduce the classical Q-learning theory. At last, we

propose our Advanced Deep Q Network algorithm.

A. Preliminaries
In our scenario, we train an offloading policy for each

device, thus the device can be viewed as RL-agent. Normally,

if the exact state transition probability matrix P is obtained, we

can solve the offloading problem perfectly with Markov Deci-

sion Process theory represented by a quaternion (S, A, R, P).
However, it is hard to get the transition probability because

of the time-variant edge enviroment. Therefore, we consider

model-free RL represented by a triple (S, A, R).
• State. Reinforcement learning aims to constantly

learn strategies from historical information to ap-

proach God’s perspective, and thus a comprehen-

sive definition of state is critical to decision-making

efficiency. We take application, network condition,

and available computing resources into consider-

ation, and define the state at time slot t as

st = (B, r1ul, · · · , rmul, r1dl, · · · , rmdl , Cl, C1, · · · , Cm)t
where B represents the scale of the input data, and Cl is

the available computing resources of the local device. Ci

is the available computing resources of edge server i, rmdl
and rmul denote the downlink capacity and uplink capacity

of server m, respectively.

• Action. In our offloading scenario, we view mobile

device as an RL-agent, which will make a decision on the

target server Etar and target proportion Pb when receiv-

ing a state (or observation) s. Innovatively, we joint the

offloading decision making and proportion determination,

and define the action as a vector at = (Etar, Pb)t.
• Reward. At each time slot t, the agent will get a reward

R(st, at) in a certain state st after executing action

at. In practice, the reward function should be positively

correlated with the objective function. In section III, the

objective is to minimize the weighted sum of delay and

energy consumption, while the goal of RL is to maximize

the long-term reward. Therefore, the reward function

should be negatively related to the weighted sum of delay

and energy consumption. We define the immediate reward

as normalized
Wl−W (s,a)

Wl
, where Wl is the sum cost if the

whole application is executed locally, and W (s, a) is the

sum cost by adopting RL methods. If W (s, a) > Wl, the

reward is a negative number, which is more conductive

for RL-agent to degrade bad actions.

Notice that, the mobile device has no prior knowledge of

the real-time available bandwidth (i.e., rup, rdl) and cores of

servers (i.e., Ci). Therefore, we propose a Server Broadcasting

Mechanism. Each mobile device maintains an information

table that records local available computing resources, avail-

able uplink and downlink capacity, and available computing

417

Authorized licensed use limited to: Nanjing University. Downloaded on March 17,2023 at 06:32:34 UTC from IEEE Xplore.  Restrictions apply. 



resources of each server the user can access to. At each time

slot t, each edge server will send heartbeat package to mobile

devices in its domain, including the available computing

resources and downlink capacity. Each user will modify the

table based on the broadcast information. The model training

process is performed on the server and the model is updated

regularly. Each user will periodically download the latest

model from the server, whereby the user can make efficient

decisions based on the current model.

B. Advanced Deep Q Network algorithm

As one of the classic value-based RL algorithms, Q-learning

has a critical impact on the successive study of RL, e.g., Deep

Q Network (DQN). We advance the DQN and make it fit a

more complex scenario.

1) Theory of Q-learning: The main idea of Q-learning is to

construct a Q-table between State and Action to store Q value,

and then select the action corresponding to the maximum Q

value. Each state-action pair will have a value Q(s, a), which

can be regarded as a long-term reward. In the continuous

training process, we can update Q value by means of TD-error

until Q table converges. The method of updating Q value is

Q(s, a)←Q(s, a) +α
[
r + γmax

a′
Q (s′, a′)−Q(s, a)

]
, (9)

where s, a are the current state and action, s′, a′ are the next

state and action, α is learning rate, and γ is incentive decay

coefficient, respectively.

2) ADQN: By consulting the Q-table, the agent can make

decisions quickly. However, the performance of Q-learning is

not ideal in many cases. If the state and action space of the

problem are very large, it is unrealistic to record all Q(s, a)
with Q table. What’s worse, we have to calculate all the state-

action values to ensure that for any state and action, we can get

the corresponding value. Taking the Atari game as an example,

after image preprocessing, the number of state is 25684×84

and the number of actions is 10, so the total number of state-

action pairs is 25684×84×10. It is a challenge for the existing

computer to store all the Q values.

In the offloading scenario, assuming that the maximum

size of input date is D, the link capacity fluctuates between

x to y, the maximum CPU cores of local device is 8,

and remote server 32, so the number of state spaces is

D × (y − x)2 × 8 × 32M , without taking the number of

action spaces into account. Therefore, we use a Deep Neural

Network to estimate Q(s, a) instead of computing Q value for

each state-action pair, which is also the basic idea of Deep Q

Network (DQN). Unfortunately, the original DQN has two big

problems as follows:

• Each sample is selected to train the network with the

same probability. In fact, the harvest of learning each

sample varies with the difficulty of each sample. Simple

samples do not improve the model much, but difficult

samples do well. If we treat each sample equally, we will

spend much time on simple samples, and the potential of

learning can’t be fully tapped.

Algorithm 1: Advanced DQN (ADQN)

Input: Initialized replay buffer D with expert data,

Behaviour Network Q with θ, Target Network

Q̂ with θ′

Output: Q value, convergent θ and θ′

1 for episode = 1,M do
2 Choose a random initial state s1;

3 get preprocessed state φ1 = φ(s1);
4 for step s = 1,K do
5 Sampling random minibatch of transitions

(φj , aj , rj , φj+1) from D with expert data;

yj =

{
rj terminates

rj + γmaxa′ J(Q̂(φj+1, a
′; θ′)) otherwise

loss = (yj − J(Q(φj , aj ; θ)))
2;

6 Perform a gradient descent to θ;

7 if step%n == 0 then
8 θ′ ← θ;

9 for t = 1, T do
10 With probability ε select a random action at;
11 Otherwise select at = argmaxa Q(φ(st), a; θ);
12 Execute action at in emulator;

13 Observe reward rt and next state st+1;

14 Preprocess φt+1 = φ(st+1);
15 Store transition (φt, at, rt, φt+1) in D;

16 if D is saturated and t%m = 0 then
17 Sample random minibatch of transitions

(φj , aj , rj , φj+1) from D with Priority

Replay Buffer Mechanism;

18 The same as lines 5-8;

• Cold start problem. For the value-based RL algorithm

such as Q-learning algorithm, it is difficult for the model

to reach a relatively ideal state quickly in the early

iterations. Moreover, the large deviation of estimating

value function in early stage, and the apparent errors

between environmental sampling and optimal strategy

make learning much more difficult.

Priority Replay Buffer Mechanism [31] solved the first

problem perfectly. It assigns each sample a weight based on

the sample’s performance or contribution to the model, and

the probability of each sample to be selected is related with

its weight. The less the contribution, the lower the weight, and

the lower probability to be selected.

Now we focus on the second problem, and the main idea

is to use pre-prepared high-quality samples to accelerate the

training speed in the early stages of the model training. We

call such samples expert samples. The high quality sampling

trajectory comes from better strategies, and thus the model

training is equivalent to standing on the shoulders of giants

and the learning speed will naturally be much faster. As long

as a certain number of high quality trajectories have been

sampled, we can complete the pre-training through supervised
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learning before the agent interacts with the environment. In the

offloading scenario, we can obtain expert data through some

greedy policies. For each application, the mobile device selects

the server with the maximum available computing resources or

link capacity as the target server, and chooses an intermediate

percentage (i.e., 50%) as the target proportion. Typically, the

expert data perform well in early stages.

In addition, we need to use DQN to complete the training.

The objective function of the ADQN becomes a combination

of multiple learning objectives:

J(Q) = JDQN (Q) + λ1JE(Q) + λ2JL2(Q), (10)

where JDQN (Q) is the objective function of Q(s, a), JE(Q)
is the objective function of supervised learning, JL2(Q) is the

objective funxtion of L2−Regularization,and λ1, λ2 are the

weight factors to balance these objective functions.

In general, the expert samples are limited, so it can only

affect a small part of the state-action value. Moreover, if these

data cannot cover as many states as possible, they may have

a negative impact on the model. To avoid these problems, we

define the objective function of supervised learning as follows:

JE(Q) = max
a∈A

[Q(s, a) + l(aE , a)]−Q(s, aE), (11)

where aE is the action given by experts, l(x, y) is an indicator

function. If a = aE , then l(a, aE) = 0, and JE(Q) = 0, which

means that the decision-making of the model is consistent with

that of experts. If a �= aE , it shows that the value of one other

action is not much worse than that of expert actions.

C. Summary

Now, we present the overview of computation offloading

with our proposed ADQN algorithm as shown in Figure 2. For

application G at each slot t, the mobile device divides the ap-

plication into multiple independent tasks, and each task corre-

sponds to a proportion. Then, the client has to make an offload-

ing decision on the target server and target proportion. We de-

fine S, A, and R in our proposed ADQN algorithm. The model

training process is performed in edge server, and users regu-

larly download the latest models from the server. The client

runs the model with the current state S as input to get the Q

value of all actions, e.g., {Q(S, a1), Q(S, a2), · · · , Q(S, an)}
and selects the action corresponding to the maximum Q

value a′ = argmaxa∈A Q(S, a). Based on this action a′ =
(Etar, Pb), the client offloads the application to the target

server Etar with target proportion Pb.

To sum up, we present ADQN algorithm as Algorithm 1.

First of all, we initialize replay buffer D with expert data,

Behaviour Network Q with θ, and Target Network Q̂ with θ′.
Then, we get the relative ideal weight θ1 and θ′1 through super-

vised learning with expert data. After that, we use the behavior

network to interact with RL-agent (i.e., mobile device) to get

a series of samples, and store them in the replay buffer. When

the samples reach a specified number, every several steps we

randomly sample a minibatch of transitions (φj , aj , rj , φj+1)
from D with Priority Replay Buffer Mechanism to train the

network, until the two networks are convergent.

TABLE II
PARAMETER SETUP.

Parameter Value Parameter Value Parameter Value

pu 0.01W ps 0.1W β2 0.1

gul 10−3 gdl 10−3 λ1 0.9

B 3 βl −2 λ 0.6

d 10 N 256 λ2 0.4

V. EXPERIMENT EVALUATION

In this section, we evaluate the performance of our proposed

ADQN algorithm. In the evaluation, based on the real-time

video analysis application, we design our simulation experi-

ment, and assign specific value to the parameter. Then, we

analyze the feasibility of ADQN. At last, we design several

control groups to verify the efficiency of the ADQN algorithm.

A. Parameter Setup

Our simulation experiment can be migrated from a real

scene as follows. In a real-time video analysis application such

as feature detection, the terminal device may receive photos

from different cameras at the same time. When the available

computing resources of the terminal device are insufficient, a

certain proportion of the photos need to be offloaded to the

appropriate edge server for execution. Therefore, the terminal

device has to decide the target edge server and proportion.

Assuming that each terminal device executes the applica-

tions between 8 a.m. and 5 p.m., and application is generated

every five minutes. From 8:00 a.m. to 11:00 a.m., due to

the working hours, the size of the application will gradually

increase, the available local and server computing resources,

and the available link capacity will decrease. From 11:00 a.m.

to 2:00 p.m., due to the break time, the volatility trend is

contrary to that in the morning. From 2:00 p.m., the changing

trend of various elements is the same as in the morning.

In general, we can set up our parameters based on the

above scene. The size of each initial application B follows an

Uniform Distribution, B∈ [2000, 3000]. The number of initial

available subcarriers k and computing resources (i.e., cores) fs
and fl follow an Uniform Distribution, k ∈ [160, 200], fs ∈
[25, 32], fl ∈ [6, 8], respectively. At each slot t, the variations

of ΔB, Δk, Δfl, Δfs follow a Poisson Distribution with

parameter P = 30, 10, 2, and 5, respectively. Some other

constant parameters are shown in table II. Furthermore, we

need to define various model parameters for our training, such

as the episodes K, the Replay Buffer size D, the Mini-batch

size m, the learning rate α, the Reward decay γ, the network

weight update frequency f , and greed index ε. In the following

comparative experiments, we will analyze the effects of these

parameters on the experimental results.

B. Comparison Design

To verify the performance of ADQN, we use several strate-

gies as benchmarks:

• None Offloading Policy (NOP). All the components of the

application are exexuted locally, and thus NOP doesn’t

care about link capacity and server resources.
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Fig. 3. Convergence and superiority of ADQN. Take note that denotation of
Y-axis in (a) and (b) is different, which denotes the training cost in (a), and
the weighted sum of delay (T) and energy consumption (E).

• Random Offloading Policy (ROP). At each slot t, the

mobile device randomly chooses an action a ∈ A,

including random server and random proportion.

• Link Capacity Optimal Policy (LCOP). At each slot t,
by querying the server resource table, the mobile device

chooses the server with the largest available link capacity

as the target server, and offloads the whole application to

the target server.

• Computing capability Optimal Policy (CCOP). Similar to

LCOP, the mobile device pursues the optimal available

computing resources. Therefore, the whole application

will be offloaded to the target server with the largest

available computing resources.

C. Simulation Results

Firstly, we show the feasibility of ADQN. Since we estimate

the Q value by means of deep neural network, the network is

guaranteed to be convergent. Otherwise, the inaccurate estima-

tion will significantly affect the decision-making performance

in the later stages. We set K to 300, D to 2000, α to 0.01, m to

50, γ to 0.9, f to 200, and ε to 0.9. Then, we start training the

network and get Figure 5. As Figure 3(a) shows, it is clear that

with the increase of training steps, the training cost gradually

decreases, and eventually goes to zero, i.e. convergence, which

shows that it is feasible to approximate Q value with neural

network. The network is constantly fluctuating because RL-

agent selects action with probability in each step, so when

the action is poor (resp. good), it will get a low (resp. high)

reward. We can also use a polynomial expression to fit the

training data. Therefore, it is feasible to solve the offloading

problem with ADQN. In addition, to verify the efficiency of

ADQN over DQN, we designed a comparative experiment as

Figure 3(b) shows. Every 10 training steps, we use the current

ADQN and DQN model for decision-making, and calculate

the weighted sum of delay and energy consumption. Although

there are some cases DQN outperforms ADQN, ADNQ has a

significant improvement compared with DQN at early stages

of training due to the Priority Replay Buffer Mechanism and

Expert Buffer Mechanism. With the increase of training steps,

ADQN and DQN will converge gradually, and eventually

achieve almost the same effect.

Secondly, we analyze the effect of buffer size and learning

rate on ADQN performance. As Figure 4(a) shows, with the

increase of expert buffer size, ADQN can be capable of a
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Fig. 4. Effect of learning rate and expert buffer size on ADQN performance.
Y-axis denote the weighted sum of delay (T) and energy consumption (E).

more ideal performance at the initial stage. However, the

performance improvement is not linear with the expert buffer

size. When a certain number is reached, the performance

improvement is not significant with the increase of expert

buffer size. Thus it is critical to determine the size due

to the costly expert buffer. Figure 4(b) shows that learning

rate plays a decisive role in the convergence of the model.

However, a high learning rate does not necessarily accelerate

the convergence rate. For example, ADQN with the learning

rate α = 0.08 or 0.10 converges more slowly than α = 0.05.

Finally, we compared the performance of ADQN with other

strategies. Similar to the above method, we set K to 300, D
to 2000, α to 0.01, m to 50, γ to 0.9, f to 200, and ε to 0.9.

Every 200 training steps, we use the current ADQN model and

other offloading policies for decision-making, and calculate

the weighted sum of time delay and energy consumption. The

result is shown in Figure 5. In early stages of training, ADQN

is only a little better than NOP and ROP, and much worse than

the other two greedy strategies (i.e., LCOP and CCOP), which

is largely due to the strong randomness of action selection.

With the increase of training steps, ADQN gradually increases

the probability of optimal action, and makes each decision

closer to the optimal choice. LCOP and CCOP are unilaterally

pursuing the maximization of resources (i.e., subcarriers k or

cores f ), which is a good method in many cases, but it is

too one-sided to consider. For example, when the network is

congested, CCOP will perform poorly. Therefore, the overall

performance is slightly inferior to ADQN.

VI. CONCLUSION

In this paper, we rethink the computation offloading prob-

lem, and propose Advanced Deep Q Network algorithm to

solve it. Firstly, we consider a general real-time multi-user,

multi-server offloading scenario, in which the edge server is

co-located with base station, and users release applications

irregularly. For each application produced by users, we aim to

minimize its weighted sum of delay and energy consumption

by offloading an ideal proportion of workload to an optimal

edge server. Then, we formalize the offloading problem as a

long-term optimization problem. Considering the complexity

of solving this NP-hard problem, we make full use of the

time-variant edge enviroment, and adopt modified DQN by

adding Priority Replay Buffer Mechanism and Expert Buffer

Mechanism. The experimental results show that ADQN has

strong practicability and efficiency. Generally, it is unrealistic
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Fig. 5. Performance comparison between ADQN and other strategies.

to train the RL network in a real scenario for constant trail

and error. Therefore, go a step further, we are going to design

a simulator that is extremely consistent with the real world.
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