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Abstract—The widespread use of 5G and artificial intelli-
gence applications has led to strong momentum in Mobile
Edge Computing (MEC). With MEC, we can offload compute-
intensive tasks to edge servers that are closer to the user, thereby
reducing the long latency incurred by data transmission via WAN.
Although many works have investigated task offloading decisions
under service caching, the state of services is an equal, if not more
important, research area of MEC, yet receive much less attention.
In general, the arrival of tasks exhibit a distribution over time.
Besides the necessary energy consumption in processing tasks
offloaded to edge servers, a large amount of energy is required
for maintaining services cached on servers. When more and more
services become idle, they will incur a non-negligible additional
energy. In this paper, we focus on an interesting but currently
less studied problem in MEC, namely online service caching
and state management in MEC. We propose DCSO, a bounded
online algorithm that considers dynamic service caching and
state management of services to minimize long-term cost in MEC
systems. Meanwhile, our algorithm achieves a 2 competitive ratio
in state management. Trace-driven simulations show that our
algorithm reduces the overall cost efficiently while keeping low
computation latency.

I. INTRODUCTION

Nowadays, the rapid development of 5G and Artificial
Intelligence (AI) has led to the emergence of a large number
of computation-intensive applications (e.g., augmented/virtual
reality [1, 2], and video processing [3]). These compute-
intensive applications require large amounts of computing and
storage resources that most smart devices cannot provide.
Meanwhile, the traditional way of offloading computation
tasks to the cloud brings intolerable delays and risks of
privacy leakage. Fortunately, with the continuous development
of edge computing technologies, MEC [4] allows users to
offload tasks to edge servers with sufficient computing re-
sources for processing, which can greatly reduce transmis-
sion delay [5]. Therefore, offloading latency-sensitive and
computation-intensive tasks to nearby MEC servers becomes
a better choice.

Offloading a complete application to a single server is
the most straightforward way, however, such offloading may
not meet the QoS of these applications. Fortunately, most
applications are composed of multiple inter-dependent func-
tions or subtasks, which can be offloaded to different edge
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servers [6, 7]. There are many studies on scheduling dependent
tasks to satisfy deadline requirements and reduce execution
cost [8-10]. However, in reality, the servers can only handle
relevant tasks if the corresponding service is cached. For
example, when dealing with interactive online gaming tasks,
the server needs to store some non-trivial data in advance. The
task dependency and service caching should be considered
when offloading tasks. Otherwise, the task will not be exe-
cuted successfully. Thus, some works jointly consider service
caching and task offloading for MEC [11-13].

In reality, a service on a server is not always requested.
Typically, the arrival of tasks exhibits a distribution over time.
This means that some services cached on a server will be idle
most of the time. Typically, in addition to the energy to serve
users, servers also need to consume a large amount of energy
to maintain idle services [14, 15]. All the services in DCs
remain open even at night and early morning, ready for the
arrivals of users. Only 5 to 10 percent of the servers are used
during these times, however, an idle server consumes 60 to
80 percent energy of that of a busy server [16]. Therefore,
there are many studies focus on improving energy efficiency
by reducing wasted energy.

Meanwhile, the resources of edge servers are more limited
than remote cloud and edge servers generally run for a long
time, which makes these idle services continue to consume
energy and occupy the limited cache space, which causes a
waste of resources [17]. For example, services on disk need
to be loaded into memory to run, whereas server memory is
limited and precious. When the number of idle services is
large enough, these idle services will incur a non-negligible
additional cost. In this paper, we take the state management of
services into account in the service caching mechanism, which
helps us manage edge servers in a finer-grained way to reduce
overall cost.

It is worth noting that the resources of MEC are not
unlimited, therefore, we should make effective use of these
resources. However, task offloading with service caching and
state management has the following challenges: (1) Service
caching and task offloading are highly coupled, it is challeng-
ing to cache services within limited edge server resources to
improve performance. (2) As mentioned before, letting idle
services occupy memory is a waste of resources, but placing
all idle services on disk is not desirable. Because the tasks
come continuously, the currently idle service may be requested



at the next moment, and loading the service from the disk into
the memory also leads to an extra delay. Although there has
been a lot of work studying stateful service placement and
migration, few are related to task offloading. Therefore, it is
necessary yet challenging to determine the service states at
each moment in long-term task offloading..

Our main contributions are summarized as follows:

e We define the Cost-efficient Delay-bounded depen-
dent task Offloading with Service management prob-
lem (CDOS). To our best knowledge, this is the first time
such problem is studied.

e We propose DCSO, an online algorithm, which can effi-
ciently cache services and manage the state of service in
an online manner. DCSO leverages the Lyapunov method
to transform the original problem into a series of single-
time frame minimization problems, each of which is
solved by using the Gibbs sampling. Meanwhile, DCSO
achieves a 2 competitive ratio in state management.

o We perform trace-based simulations and show that the
proposed DCSO algorithm significantly reduces the total
cost compared to baseline algorithms.

II. MODEL AND PROBLEM DEFINITION
A. System Model

As we can see from Fig. 1, time is divided into frames,
where a frame contains a control sub-frame and an offloading
sub-frame. We use T={1,2,....,7} to denote the total time
frames. In the control sub-frame, control information is ex-
changed among edge servers and mobile devices to determine
the offloading schedule and services’ state and tasks are
processed during offloading sub-frame. We use 7. and 7 to
denote the duration of a control sub-frame and the entire
time frame, respectively. Edge servers in the MEC system are
denoted as E={ej,ea,...,e;n } and there are N users need to
offload jobs to MEC for processing. The set of services is
denoted as A={aq,...,a5}.

Each edge server can cache multiple services as long as
there are available resources. For convenience, this paper
considers the CPU and memory resource only. We use W; to
represent the computing capacity of edge server e;. The state
management of services in a real environment is very complex
and difficult to model. To simplify the analysis, we assume that
the server is at maximum CPU speed when processing tasks,
and at minimum CPU speed when the server is idle [13]. We
assume that the services that have been cached on the server
have three states, namely ‘work’, ‘ready’ and ‘sleep’. Service
as is in state ‘work’ when a task is being processed by the a,
and we use c{ ; to denote the cost when service a execute one
unit workload on edge server j. Service a, is in state ‘ready’,
if the service is loaded into memory of the edge server and
can execute the incoming tasks immediately and we use cP
to represent its unit cost. Service a; is in state ‘sleep’, if the
service is cached by the edge server but it needs to be activated
before processing the tasks. Like [18], we use cy’ to denote
the activation cost of service as, which mainly comes from
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Fig. 1. Service Caching and State Management.

the maintenance cost of the edge system. Denote I7(t) as an
indictor, I7(t)=1 if service a, is cached by edge server e,
in time ¢, I7(t)=0 otherwise. Denote UZ(t) as an indictor,
UJ(t)=1 if service as is cached and is in state ‘sleep’ in time
t, UJ(t)=0 otherwise.

In this paper, each job is composed of multiple dependent
tasks and a job from user k is represented as a directed acyclic
graph (DAG) Ji(t), where ¢ indicates the time frame. We
use Vi (t) to represent the set of tasks in J(t) and vj(t) to
represent the i-th task in Vy(¢). b% (t) represents the workload
of task v! (¢) in job Jx(t) in the time frame ¢. For consistency
if user does not need to offload job in frame ¢, the workload
of all tasks in Jy(t) is zero. A directed edge (i,j) in the
DAG of J(t) indicates that task vj(¢) must be processed
before task vj,(t), and we use o/ (t) to represent the amount
of data exchange between task v} () and vy (t). For ease of
presentation, we use R: (¢) to denote the set of precursor tasks
of vi in job Ji(t). Each task exactly maps to a service that
needs to be cached on servers to process and we use ¢ (¢) to
denote the service that is used to process task v (t).

If task v} (¢) is offloaded to edge server e; without the
service to execute it, the corresponding service must be
downloaded from the remote-cloud in the control-frame of
time frame ¢. In Fig. 1, service a4 is downloaded in the
control frame in ¢; by edge e;. Denote x” (t) as an indictor,
zy? (t)=1 if task v} (t) is offloaded to €; in time ¢, 2’ (£)=0
otherwise. We use ¢ ; to represent the cost when downloading
service a, on server ¢; and we assume that all services can be
downloaded and cached during the control sub-frame. Thus,
the download cost in time frame ¢ can be denoted as
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I(t)(1— I(;l ® (t—1))=1 represents that task v¥ () is
offloaded to server e; and need to download service ¢} () for
processing. We use df ; and c{ ; to represent the time and
cost when execute one unit workload of service as on edge
server e;, respectively. Therefore, the execution cost Cg(t)
can be denoted as C'x (t)= Zk lzlw"(t)‘zjj\ilxgj(t)b}; (t)es;.
Similarly, we use d!,, and c!,, to represent the time and cost
when transferring one unit data from edge server e, to e,,

where x



respectively. The transmission cost Cr(t) in time frame ¢ is
as follows:
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where the third summation represents the amount of data
transferred from precursor tasks to task v} (¢).

We use colocation cost to represent the cost when service
is in ‘ready’ state. For services that cached on the edge server
but have not processed tasks throughout the time frame, its
idle time is 7. For services that is in the ‘work’ state at the
beginning of the time frame, its idle time is (7 —b (¢ )d;z (). ).
For services that need to download from the cloud, its 1dle
time is m—m.—b% (t)d¢, ., .. Thus, the colocation cost Cp(t)
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Therefore, the total cost in time frame ¢ is C(t)=
Ce(t)+Cp(t)+Cp(t)+Cr(t)+Cw(t). Meanwhile, we de-
note Dg(k,t) as the execution latency of task Ji(t) in time
frame ¢, and

Vi (t)] M

)= > wilt

i=1 j=1

¢k t).J- (5)

The accumulated latency after executing task v (¢) is denoted
as D(i,k,t), and the accumulated transmission time is deter-
mined as
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where ak (t) denotes the amount of data exchange between
task v (t) and v (t) in job Jx(t). So the accumulated comple-
tion time from the first time to the task |V (t)| is as follows:
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Alg. 1: Dynamic Caching with State Optimization

(DCSO) alg. for P1

1 Input: ¢(0)<0;

2 Output: service caching policy {A!,A2,...
task offloading policy {X*! X2,....X"};

3 for =0 to 7—1 do

,AT} and

4 Receive user tasks from environment;

5 for service as cached on server e; do

6 if U7 (t)=0 then

7 if U (t)=0 lasts ¢ time frames:
8 then

9 | Ui(t)=

10 Choose {z;;,U;;} by solving P2 using GS alg.;
| q(t41)=max{q(t)+D([Vi(t)|k,t)-Q,0};

B. Problem Formulation

The Cost-efficient Delay-bounded dependent task Offload-
ing with Service management problem (CDOS) is as follows:

(P1) min lim ZC
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Eq. (8b) represents the service caching constraint. Eq. (8d)
indicates that at most one instance of each service can be
cached on the server. Eq. (8e) represents the resource con-
straint. Eq. (8f) is the long-term delay constraint for the tasks
of users, which couples the offloading decision both spatially
and temporally.

ITII. ALGORITHM
A. Lyapunov Method

In the online scenario, the decisions made at the present
time frame will have an impact on the future offloading deci-
sions, therefore, we cannot directly solve P1. With Lyapunov
method, we can focus on solving a series of minimization
problems in each time frame. First, we use a virtual queue to
measure the exceeded latency by history. Specially, assuming
q(0)=0, we have: q(t+1)=max{q(t)+D(|Vs(¢)|,k,t)—Q,0}
where ¢(t) indicates the gap between current delay from the
constraint. The congestion of the virtual queue is represented
by the Lyapunov function L(q(t))=%¢*(t). A small L(q(t))



implies that the virtual queue is stable and not congested. We
introduce the one-frame Lyapunov drift to stabilize the queue:

A(q(t))=E[L(q(t+1))—=L(q(t))lq(?)]

Theorem 1. For ¢(t) in all frames, the following stable
statement always holds: A(q(t))<B+q(&)E[(D(|V(t)|,k,t)—
Q)lq(t)], where B=%(Dyao([Vi(t)],k,t)—Q)? is a constant
value, and Dy,q. (Vi (t)|,k,t)=maxic. D(|Vi(t)|,k,t) repre-
sents the biggest average latency in all frames.

Proof.
A(g(t)) =5 Bl (1)~ (1) a(1)] ©
< 5B+ DIV k) -QP~¢* (1) a(t) (10)
= 5 (D(VA(0) k:4) - @) +a(EID(Vi(0) ) - @)la(e)
1D
<Bg(DEID(V4(0)].k.)-Q)la(0)] (12)

The inequality (10) comes from (q(¢t)+D(|Vi(t)|,k,t)—Q)>
maxz{q(t)+D(|Vi(t)|.k,t)—@Q,0}. H

Given the MEC state information in time frame ¢, A(q(¢))
represents the expected change in Lyapunov function. The
smaller A(q(t)) is, the more stable the virtual queue is. We
focus on finding the optimal offloading strategies for all DAG
tasks and service caching decisions for edge servers, taking
into account the state management of services. Therefore,
we need to minimize the upper bound of the drift-plus-cost
expression in each time frame:

Aq(1))+V-E[C(#)]q(?)] (13)
<B+qE[(D(|Vi(t)]:k,t)—Q)lq(0)|+V-E[C(#)]q(t)].
V' is a positive parameter, used to adjust the tradeoff between
cost and latency. A minimized upper bound of the drift-
plus-penalty term can be obtained by the drift-plus-penalty

algorithm [19] in Lyapunov optimization. Thus, the new
minimization problem is as follows:

(V-C(@0)+q() D(|Vi(t)]:k,1))
s.t. (8b)—(8e).

(P2) min (14)

15)

In each time frame, task processing and data transmission
will cause delays. We consider the average delay of this part by
considering the addition term ¢(t) D(|Vy(¢)|,k,t). Minimizing
the average latency is more important when ¢(t) is big. As
a consequence, our algorithm follows “Use more servers and
remote cloud if latency constraint is violated” philosophy, and
the latency is maintained, thereby enabling online offloading
decisions. In this way, the algorithm is completed as long as
P2 is solved, which will be discussed in Section III-B.

Each service cached by the edge node has three states, for
a service in ready state, we need to decide when and whether
to turn it into sleep state. The state of services cached on
the edge server is determined by a wait and sleep way (Lines
5—9 in alg. 1). The method is simple and straightforward, if a

Alg. 2: Gibbs Sampling based (GS) alg. for P2

1 Output: Caching policy A and offloading policy X;
2 Initiation: A%«0;

3 for iteration i=1,2,....N do

4 Randomly choose an edge server r<M and a
caching decision \.;

5 if A is feasible then

6 Given caching policy Ai~1, compute the
offloading decision X and cost C;

7 Given caching policy (A=1(J).), compute the
optimal offloading decision X’ and cost C”;

8 Let A}=X; with the probability p=1—=r—c7
and ML=\ with probability 1—p;

9 | Return XN AN,

service is in ready state for ¢}’ time frame, we then turn it into
sleep state. If the service turn to work state quickly (within
cy frames), this state management is optimal. If the service
turn to work state after a long time frames (longer than cY),
then this state management spends 2c}’ cost, while the optimal
algorithm solution spends only ¢y’ cost. Because the optimal
solution turns the service into sleep state once it finishes the
task. Thus, the state management in alg. 1 is 2-competitive.

B. Optimization Algorithm for Single Time Frame

We focus on the cost minimization problem P2 in each time
frame. It is well known that the joint service caching and
task offloading is already NP-complete without considering
service state selection [13]. We present algorithm 2 based
on Gibbs sampling. Algorithm 2 iteratively determines the
optimal caching and offloading decisions at the control frame.
In each iteration, an edge server r (r<M) changes caching
decision from A, to \. virtually while keeping other caching
decisions unchanged (Step 5). GS will check the feasibility of
the changed service caching decision (Step 6). If the changed
decision is feasibility, we then can get the corresponding
objective value C'. Assume that when caching decision of edge
server r changes from A, to A., the objective cost varies from
C'to C'. Then, we get the relationship between the conditional
probability distribution of service caching strategies and the
objective cost: the caching decision of edge server r changes
from Ay to X; with probability p=1—r—ez (w>0) and
maintains A\, with probability 1—p (Step 9).

It is well known that decisions made based on current in-
formation in combinatorial optimization tend to fall into local
optima. Thus, Gibbs sampling uses a smooth parameter w>0
to control exploration and exploitation. Gibbs Sampling has
a good property that when w becomes smaller, the algorithm
can converge to the global optimal solution with an increasing
probability. And alg. DCSO converges to the optimal result in
global with probability 1 when w—0.

C. Algorithm Analysis

The performance of DCSO is analyzed in this subsection.



Theorem 2. Using alg. DCSO, the average delay is O(%)
and the average queue size is O(V).

Proof.

Lemma 1. For any §>0, there exists a stationary and ran-
domized policy 11 for PI1, which decides independent of the
current queue backlogs q(t), such that:

E[D(|Vi(t)] k)" -Q]<0.
The proof can be obtained by Theorem 4.5 in [20]. By

applying lemma 1, we have:
Alg(t)+V-E[C(t)"q(1)]
§B+Q( ) [ (‘Vk( )|7kat)n
E[D([Vi(t)].k.t)"a(t)]
<B+8q(t)+V-(C(t)P")+9).

Let 6=0, summing the right inequality over 7—1 time
frames and then dividing the result by 7, we have:

,7ZE

(16)

—Qlq(t)+

a7

%E[L(q(t))— M<B4v.C(t)°r".

(18)

Because L(g(t))>0 and L(¢(0))=0 in our scenair, we have:

lim 137775 E[C(8)]>C(r)"'~ .

! K%ter that, we assume there are values

U(e) and an decision C()' that satisfies: E[C(t)']=

U(e), E[D(|Vg(t)|,k,t)I —Q]<—e. Plugging above into in-

equality (13): A(q(t ))+VE[C( WI<B+VU(e)—eq(t).
Adding up the above formulas by time frames, we have:

e>0 and

1= B+V (W(0)—1 375 E[C(1)]
P2 Plabl< ( = )
T €
_B V(cma:r Copt). (19)
€
Considering Y73 >S"T—J E[D(|Vk(t)],k,t)"—Q], we have:
T—1
IS B kDD e oy o)
=0

Taking a lim sup of Eq. (20) as t—o00 yields the delay bound.
O

IV. PERFORMANCE EVALUTION

We compare DCSO with the following baseline algorithms.

« Non-State algorithm (Non-State) [21]: Edge serves cache
services according to Alg. 2. Once a service is cached on
the server, it never switches to sleep state;

o Cost Priority algorithm (CP): Edge servers cache services
according to caching cost regardless of long-term con-
straint. Once a service is idle, it switches to sleep state;

e Cloud Only algorithm (CO): This algorithm always of-
floads tasks to cloud for processing.

There are 10 types of service and each of 10 servers
can cache 3 to 5 services simultaneously, and the remote-
cloud caches all services. We perform the simulations using
Alibaba’s trace of data [22]. To comply the characteristics
of low latency in MEC, the transmission delay among edge
servers is set to [5,100] ms and and the processing time
of each task is set to [10,200] ms. The transmission delay
from the edge server to the remote-cloud is set 20 times of
that between two edge servers, because the distance between
the edge server and the remote-cloud is very long and data
needs to be transmitted through the WAN. Since the remote-
cloud usually provides more resources than edge servers, the
processing time in the remote-cloud is set 0.75 times of that
in MEC. Note that once a task is uploaded to the remote-
cloud for processing, subsequent tasks will be executed on
the cloud because the latency and the cost of transmission is
too high. Costs are measured in energy consumption. We set
the transmission cost as 0.935 J/KB and the caching cost as
1.5 J [23]. We set the processing cost as [2,4] J/KB of each
edge server and 5 J/KB of the cloud. The ready cost is set to
be 0.8 J and the activation cost is set to be 1.2 J.

A. Simulation Results

1) Convergence: Fig. 2(a) shows the convergence during the
execution of DCSO.. The smaller w is, the faster convergence
speed is. When w=10"2, our algorithm DCSO has converged
within 40 iterations. However, it is incorrect to reduce w
blindly, which will not make the algorithm converge to the
optimal solution. In our experiment, when the value of w
is 1071, a good compromise can be achieved between the
solution and the speed of convergence.

2) The impact of different parameters: From Fig. 2(b) and
Fig. 2(c), we can see that DCSO outperforms the other baseline
algorithms. CO alg. has the worst performance because it
always offloads tasks to the remote-cloud, resulting in a large
transmission delay. And as expected, the cost of Non-state alg.
is still large, this is because idle services consume too much
energy. The cost of CP alg. is not the minimal, because the
service will enter sleep mode once idle, and the activation
operation will also consume a lot of energy.

3) Performance comparison: In Fig. 3(a), as the number of
tasks increases, each time requires more resources to process
tasks, thus increases the cost. It is worth noting that when
the type of service changes from 1 to 2, we set the cost
and workload of the second service 0.7 times that of the first
service. So there is some reduction in the cost of all algorithms
(Fig. 3(b)). Fig. 3(c) shows the impact of number of servers.
There is little change in the performance of the CO algorithm
as it uploads all tasks to the cloud for processing. When the
number of servers is small, in order to handle different types
of tasks, the server will frequently update the cached service,
which brings a lot of costs. Therefore, when the number of
servers increases, the processing of newly arrived tasks can
reuse preciously cached services, thus reducing a lot of costs.
From Fig. 3(b) and Fig. 3(c), since CP alg. set idle services to
sleep state, when there are few types of services, the activation
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operation will be triggered frequently, which will increase a
lot of costs. And since Non-state alg. does not consider state
management, when there are more idle services (more service
types and fewer tasks), more costs will be incured.

V. CONCLUSION

Because the resources of edge system are limited, caching
appropriate services in MEC and offloading tasks to appro-
priate servers is crucial for optimizing quality of experience
and improving resource utilization. We consider the dependent
tasks offloading and scheduling with service caching and state
management in MEC. We propose DCSO, an online algorithm
that considers dynamic service caching and state management
to minimize long-term cost in MEC systems. Experiments
demonstrate our algorithm outperforms other baselines.
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