
Computer Networks 184 (2021) 107655

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Learning scheduling bursty requests in Mobile Edge Computing using
DeepLoad
Ning Chen a, Sheng Zhang a,∗, Jie Wu b, Zhuzhong Qian a, Sanglu Lu a

a State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
b Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA

A R T I C L E I N F O

Keywords:
Bursty requests
Edge collaboration
Deep reinforcement learning

A B S T R A C T

The emergence of Mobile Edge Computing (MEC) alleviates the large transmission latency resulting from the
traditional cloud computing. For the compute-intensive requests such as video analysis, mobile users prefer
to obtain a desired quality of experience (QoE) with neglected latency and reduced energy consumption.
The popularity of smart devices allows users to release a run of compute-intensive as well as latency-
sensitive requests anywhere, which may lead to bursty requests. A single resource-constrained edge server
nearby is capable of handling a small amount of requests quickly, yet it seems helpless when encountering
bursty compute-intensive requests. Despite the abundance of recently proposed schemes, the majority focus
on efficiently scheduling pending requests in a single edge server, and ignored the potential role of edge
collaboration to schedule bursty requests. Besides, while some recent studies proposed to finish a task using
multiple devices, they focused on collaboration between mobile devices rather than between edge servers.
Hence, we propose DeepLoad, a S2S system that schedules the bursty requests with a collaborative method
using reinforcement learning (RL). DeepLoad decouples the scheduling decision into AP selection for setting
the access point and workload redistribution for collaborative servers. DeepLoad trains a neural network model
that picks decisions for each request based on observations collected by mobile devices. DeepLoad learns to
make scheduling decisions solely through the resulting performance of historical decisions rather than rely on
pre-programmed models or specific assumptions for the environment. Naturally, DeepLoad automatically learns
the scheduling algorithm for each request and obtains a gratifying QoE. We aim to maximize the fraction of
requests finished before their attached deadlines. Based on the Shanghai taxi trajectory data set, we design a
simulator to obtain abundant samples, and leverage two GeForce GTX TITAN Xp GPUs to train the Actor–Critic
network. Compared to the state-of-the-art bandwidth-based and server resources-based methods, DeepLoad can
achieve a significant improvement in average fraction.
1. Introduction

The rise of 5G has greatly strengthened the connection between hu-
mans and machines. Meanwhile, compute-intensive applications such
as interactive gaming, image/video processing, augmented/virtual re-
ality and face recognition, are becoming popular on mobile devices, and
these applications pursue low delay and low energy consumption. With
the emergence of the Mobile Edge Computing (MEC) paradigm [1–
4], the data and computation are pushed away from centralized cloud
computing infrastructures to the logical edge of a network, thereby
enabling analytics and knowledge generation to occur closer to the

∗ Corresponding author.
E-mail addresses: ningc@smail.nju.edu.cn (N. Chen), sheng@nju.edu.cn (S. Zhang), jiewu@temple.edu (J. Wu), qzz@nju.edu.cn (Z. Qian),

sanglu@nju.edu.cn (S. Lu).
1 We can offload partial frames to adjacent servers for rendering may mitigate the expensive cost of single edge cloud. Of course we ought to eliminate the

mobile users, which mitigates the problem of high energy consumption,
limited capability of mobile devices and the unexpected WAN latency.

In the current MEC paradigm, an edge cloud covers a huge service
area, in which the users can send diverse requests to this single edge
cloud for processing. Generally, a single edge cloud is sufficient to
handle a small amount of requests quickly. However, we observed that
more and more requests are compute-intensive and bursty, and thus
cannot be efficiently handled by a single resource-constrained edge
cloud. Taking the multi-player Virtual Reality (VR) game as an exam-
ple, such as From Other Suns, or Seeking Dawn. Generally, VR [5,6]
has stringent performance requirements including a fps (i.e. frames
vailable online 2 November 2020
389-1286/© 2020 Elsevier B.V. All rights reserved.

correlations of inter-frames and guarantee the playback order of recombined VR vi

https://doi.org/10.1016/j.comnet.2020.107655
Received 16 May 2020; Received in revised form 28 August 2020; Accepted 27 Oc
deo.

tober 2020

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:ningc@smail.nju.edu.cn
mailto:sheng@nju.edu.cn
mailto:jiewu@temple.edu
mailto:qzz@nju.edu.cn
mailto:sanglu@nju.edu.cn
https://doi.org/10.1016/j.comnet.2020.107655
https://doi.org/10.1016/j.comnet.2020.107655
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2020.107655&domain=pdf

Computer Networks 184 (2021) 107655N. Chen et al.

a
o
t
r
c
r
t
u
c
s

e
r
d
i
D
a
S
p
S
f

I
a
s
e
X
t
t
d
w
i
o
e
w
i
n
r
f

a
o
t
c

b
s
o
s
e
c

i
f
b
o
w

2

t

b
s
a
i
o
t

l
h
b
d
A

per second) above 60, and a motion-to-photon latency below 20 ms,
nd yet the compute-intensive rendering processing becomes the key
bstacle to satisfy such stringent requirements. What’s more, during
he interaction of VR, many players are likely to release rendering
equests simultaneously, which inevitably causes the bursty arrival of
ompute-intensive requests. For an edge cloud, it not only needs to
ender the foreground and background for each action, but also needs
o synchronize the entire VR scene by sending real-time images to each
ser, which results in unpredictable computational and communication
osts. In such a dilemma,1 a single resource-constrained edge cloud may
eem helpless.

Existing works have fallen short of handling bursty request in
dge computing. Most of them [7–10] focused on offloading bursty
equests to either of a local device, an edge server, or the remote cloud
ata center. Studies for edge collaboration highlight its advantages
n D2D (device to device). For example, Chen et al. [11] proposed a
2D framework to achieve energy-efficient collaborative task execution
t the network-edge for mobile users. Wu et al. [12] proposed the
VC scheme to achieve a flexible video distribution. Guo et al. [13]
roposed edge-cloud collaborative computation offloading, but ignored
2S (edge server to edge server). Next, we will put forward the S2S
ramework and present the novel algorithm to schedule bursty requests.

In this paper, we consider a general edge scenario of bursty requests.
n a local area network (LAN) environment, the densely-distributed
ccess points (APs), which refer to wireless access points, small cell base
tations and other hardware that can receive and forward requests from
nd devices, are connected with each other through back-haul links via
2 interface or S1 interface of Core Network. In light of tremendous

ransmission, the S1 interface is probably the best option. Practically,
he edge servers configured with a limited number of services are
eployed at APs, so that mobile users can offload requests attached
ith a deadline to an AP nearby. We will use AP and edge server

nterchangeably in the sequel of the paper, since an edge server is
ften attached with an AP. How to make an efficient scheduling when
ncountering numerous newly released requests is a common but not
ell-solved problem. What is worse, edge servers maintain long queues

n which considerable workloads wait in line to be processed, and the
etwork is degraded to an inferior state. To address it using collabo-
ation, two fundamental problems must be taken into consideration as
ollows:

⊳ AP selection. Generally, each AP covers a specific service area,
and multiple APs are accessible to a user concurrently. When a user
releases a request, the first step is to select an optimal AP in terms of
available network bandwidth and server resources. Picking the AP in a
random manner may lead to network degradation and server overload.

⊳ Workload redistribution. Since the AP is selected, the user
offloads the newly released request to the edge server co-located with
the selected AP. We estimate the completion time of handling this
request only in this AP. If the valuation is bigger than the attached
deadline, we fall back on the selected AP’s adjacent servers, and offload
partial workload to them. However, it is challenging to determine the
optimal fraction of workload for each AP, given the unpredictable
future workloads.

The features of a heterogeneous edge environment, such as the
mobility of users and the variability of network bandwidth, leads to
intractable decisions for the above two problems. Additionally, the
workload redistribution relies on the outcome ofAP selection. In this
paper, we pursue a black-box approach for scheduling bursty requests
that embraces inference while not relying on detailed analytical per-
formance modeling. Motivated by the recent inspiring achievement
of deep reinforcement learning (DRL) [14–16] that shows efficient
decision-making in dynamic environments, we propose DeepLoad, an
intelligent edge-based scheduler that is customized for bursty requests
and makes coordinated decisions. Given the known network and server
information, the mobile user can make a quick scheduling decision for
2

each request, which includes the selection of the first access point and s
the percentage of workloads being redistributed among the neighbors
of the first AP. DeepLoad learns a policy purely based on the known
information, without foreseeing the future.

DeepLoad depicts its policy as a neural network that maps ‘‘raw’’
observations (e.g., workload of request, available link bandwidth and
server resources) to the scheduling decision. The neural network in-
corporates a rich diversity of observations into the scheduling policy
in a scalable and expressive way. During training, DeepLoad starts
knowing nothing and gradually learns to make better scheduling de-
cisions through reinforcement, in the form of reward signals that
reflect user QoE (the request completion time) for past decisions.
DeepLoad leverages a state-of-the-art asynchronous advantage actor–
critic network model (A3C) [15] to train the policy network, which
takes the edge network situation, server statuses and request features
as inputs and selects an optimal action through the output (e.g., action
distribution). To obtain abundant samples and evaluate DeepLoad’s
performance, we design a BRS simulator using trace-driven based on
the Shanghai taxi trajectory data set, and train the actor–critic network
with numerous episodes. Finally, we set several control experiments,
and the results demonstrate the superiority of DeepLoad compared with
state-of-the-art strategies.

We summarize our contributions here as follows.
⊳ We consider a general but tricky scenario, where bursty requests

ttached with personalized deadlines are released simultaneously with-
ut prior notice, and then we formulate it as a long-term optimiza-
ion problem, which aims to maximize the number of requests whose
ompletion times are superior to the deadlines.

⊳ We propose DeepLoad, an intelligent DRL-based scheduler for
ursty requests. Given the known information about edge network
ituation, server statuses and request features, DeepLoad is capable
f scheduling each request efficiently. What is more, we provide the
pecific definition of state, action and reward in DeepLoad, which
nables the RL-agents of DeepLoad to train its actor–critic network
ontinuously.

The remainder of this paper is organized as follows. Section 2
ntroduces a motivation example. Section 3 describes our system model
ollowed by problem formulation. Section 4 details our design of DRL-
ased algorithm. Section 5 comprehensively evaluates the performance
f DeepLoad with several control experiments. We review some related
ork in Section 6 with the conclusion in Section 7.

. Motivation

In this section, we analyze an inspiring example to better illustrate
he main idea of this paper.

We consider a LAN environment, where all APs are connected by
ack-haul links that can be used for inter-AP communications, edge
ervers configured with several specific services are deployed at APs,
nd each user is within the service area of multiple APs. Each user
ndependently generates compute-intensive requests at the beginning
f each time slot. Now, we focus on a particular user 𝑢 that can connect
o 𝐴𝑃1 or 𝐴𝑃2 directly as shown in Fig. 1. At this time point, 𝑢 releases

a new request of type 𝑅 with a total workload of 96, an input size of
300 and a deadline of 48. Each edge server deployed at an AP main-
tains multiple FCFS queues that contain numerous pending workloads
waiting to be processed as Table 1 lists. In this example, since the type
of request generated by 𝑢 is 𝑅, we only consider the pending workload
of type 𝑅 on each server. Similarly, we only list the number of cores
assigned to the service of type 𝑅 at each server. The number besides a
ink between user 𝑢 and an AP is the bandwidth. As we know, the back-
aul links between APs have much higher bandwidth than access links
etween users and APs. Therefore, we only consider the propagation
elay between APs. Hence, the number besides a link between two
Ps is the propagation delay. Fig. 2 shows three different offloading

trategies and their completion times.

Computer Networks 184 (2021) 107655N. Chen et al.
Table 1
Current states of edge server.

Info. Servers

𝐸1 𝐸2 𝐸3 𝐸4 𝐸5 𝐸6

Available cores 4 3 8 4 4 6
Pending workload 80 60 120 40 60 120

Fig. 1. A motivation example. Servers are deployed at APs that are connected with
each other through back-haul link. The bandwidth of uplink and downlink, and
propagation delays of inter-APs are marked.

Fig. 2(a) illustrates the traditional scheme. Mobile user 𝑢 first selects
either 𝐴𝑃1 or 𝐴𝑃2 to connect, and then sends request 𝑅 to the server
co-located with the selected AP. From release to completion, request
𝑅 goes through four diverse delays, including data upload delay 𝑡1,
queuing delay 𝑡2, computing delay 𝑡3, and the resulting download delay
𝑡4. Without loss of generality, we assume the size of the results is
probably one fifth of the input size. For instance, if 𝐴𝑃1 is selected, we
have 𝑡1 =

300
20 , 𝑡2 =

80
4 , 𝑡3 =

96
4 , and 𝑡4 =

0.2×300
20 , leading to a completion

time of 62, which is larger than the deadline 48. Unfortunately, the
deadline still cannot be met if we switch to 𝐴𝑃2.

In practice, we redistribute the workloads of 𝑅, and offload partial
computation to 𝐴𝑃1’s adjacent servers (i.e., 𝐴𝑃3 and 𝐴𝑃4 in this exam-
ple). Thanks to the small propagation delay of inter-APs, this method
may enable this request to get a desired completion time.

Fig. 2(b) shows the single collaboration strategy, in which the first
selected AP (e.g., 𝐴𝑃1) sends half of the workload to one of its neighbor-
ing servers (e.g., 𝐴𝑃3), and the workflow is 𝑢→𝐴𝑃1→

{

𝐴𝑃3
}

in the top
half of Fig. 2(b). Similarly, we can calculate the completion times to be
50 and 48 in the top and bottom half of Fig. 2(b), respectively. Fig. 2(c)
shows the double collaboration strategy, in which the first selected AP
(e.g., 𝐴𝑃1) sends one third of the workload to each neighbor (i.e., 𝐴𝑃3
and 𝐴𝑃4), and the workflow is 𝑢→𝐴𝑃1→

{

𝐴𝑃3, 𝐴𝑃4
}

in the top half of
Fig. 2(c). The completion times are 47 and 43.3 in the top and bottom
half of Fig. 2(c), respectively. As a result, the completion time has a
significant improvement over Fig. 2(b), which motivates us to utilize
edge collaboration and carefully redistribute the workload.

Note that the example is a simple offline scenario that does not
consider the unpredictable bursty requests. When users anywhere re-
lease requests independently, the offloading decision made by each
individual user may collide. For example, at the current time 𝑡, from
the perspective of user 𝑢, it seems that offloading the workloads of the
request to 𝐴𝑃2 and 𝐴𝑃6 in Fig. 2(b) could finish the request before
deadline; however, some other users may also decide to offload its
workloads to 𝐴𝑃2 or 𝐴𝑃6, which is unknown to 𝑢. Such an online
and bursty, yet realistic, setting makes traditional offline decisions
sub-optimal. These challenges together motivate us to make efficient
scheduling in a learning method without priori knowledge of future.

3. System model and problem formulation

3.1. System model

Fig. 3 shows the local area network (LAN) we consider in this paper.
Suppose that there are | | users, 𝑁 APs, || types of services in
3

Fig. 2. Comparisons of diverse scheduling strategies.

total,  =
{

𝑢1, 𝑢2,… , 𝑢
| |

}

,  =
{

𝐴𝑃1, 𝐴𝑃2,… , 𝐴𝑃𝑁
}

and  =
{

𝑚1, 𝑚2,… , 𝑚
||

}

, respectively. The bandwidths of the uplink and
downlink between 𝑢𝑖 and 𝐴𝑃𝑗 are 𝑟(𝑖𝑗)𝑢𝑝 and 𝑟(𝑖𝑗)𝑑𝑜𝑤𝑛, respectively. As we
know, the back-haul links between APs have much higher bandwidth
than access links between users and APs, thus, we only consider the
propagation delay between APs. We denote by 𝑙(𝑗,𝑘) the propagation
delay between 𝐴𝑃𝑗 and 𝐴𝑃𝑘. In addition, we define a function  (𝑥) to
denote the set of APs, each of which is directly accessible from 𝑥, and
𝑥 is referred to as a user or an AP.

Main notations are summarized in Table 2.

3.1.1. Request model
We divide the time of interest into multiple slots of equal length,

 =
{

𝑡1, 𝑡2,… , 𝑡
| |

}

. Each user releases at most one request at any time
slot. We use 𝑅𝑡

𝑖 to represent the type of request released by user 𝑢𝑖 at
slot 𝑡. Without causing any confusion, we set 𝑡

𝑖 to 0 if 𝑢𝑖 does not
release any request at slot 𝑡. Let 𝑑𝑑𝑙𝑡𝑖 denote the deadline of 𝑅𝑡

𝑖.
In fact, the requests released by mobile users can be viewed as

specific jobs, which are processed through the corresponding services
installed in the edge servers. Based on [17,18], a request can be divided
into multiple mutually independent tasks in a fine-grained manner,
and each task can be executed independently in an edge server that
configured with the corresponding service for that type of request. For
example, a real-time video analytics request needs to analyze real-time
images from different cameras. Since the pictures taken by different
cameras are independent of each other, we can divide this job into
multiple independent tasks, and each task analyzes the pictures from
the same camera.

We measure the workload of a request based on the scale of its input
data. We denote the bytes of the input data of 𝑅𝑡 as 𝐵𝑡. Without loss of
𝑖 𝑖

Computer Networks 184 (2021) 107655N. Chen et al.
Fig. 3. In a LAN environment, APs are connected by back-haul links; each edge server
is configured with a limited number of services.

generality, denote by 𝜔 (in CPU cycles per byte) the number of clock
cycles a microprocessor would perform per byte of data; the specific
value of 𝜔 usually depends on the nature of the request, e.g., the time
and space complexity. Then, the workload of 𝑅𝑡

𝑖, denoted by 𝑊 𝑡
𝑖 , is 𝜔𝐵𝑡

𝑖 .

3.1.2. Edge server model
Generally, the edge servers are deployed at APs, and each AP can

accommodate up to one edge server. The edge servers are in charge
of managing the resources and virtualizing the resources by means of
VM or Docker. Each edge server has limited storage and computing
capability, and in this paper we pay more attention to the computing
capability, which is measured by the number of cores, and each core
has equal processing power 𝑓 (in cycles per second). An edge server
is usually resource-constrained, thus it can only be configured with a
limited number of services. We use 𝑆 𝑖

𝑗 to indicate whether 𝐴𝑃𝑗 has
service 𝑚𝑖 and use 𝑐𝑖𝑗 to represent the number of cores assigned to
service 𝑚𝑖 at server 𝐴𝑃𝑗 . Therefore, for an edge server 𝐴𝑃𝑗 with 𝐶𝑗
cores, we have ∑

𝑚𝑖∈ 𝑆 𝑖
𝑗𝑐

𝑖
𝑗 ≤ 𝐶𝑗 . Note that, only if the edge server

is configured with the service corresponding to the request, can the
request be executed in this edge server.

In this paper, each edge server can handle different types of requests
simultaneously. For the same type of requests, an edge server maintains
a request queue, and processes these requests based on a first-come,
first-served (FCFS) basis. Denote by 𝑄𝑡

(𝑗,𝑖) the FCFS queue for service 𝑚𝑖
on edge server 𝐴𝑃𝑗 at time slot 𝑡.

3.2. Problem formulation

For any request released by a mobile user, its execution goes
through two stages at most, namely AP selection and workload redistribu-
tion. When the user’s personalized deadline is satisfied in the first stage,
the second stage is not needed. Based on the current information about
the network, the edge servers, and request features, the user selects an
AP from its neighboring APs for offloading. Then the user uploads the
input data to the AP, which first checks whether the deadline can be
satisfied if the total workloads are processed by itself. If the estimated
delay is no larger than the deadline, then the AP processes all the
workloads of this request. Otherwise, the AP performs the workload
redistribution stage. For example, as Fig. 3 shows, a request 𝐴 released
by some user selects either 𝐴𝑃2 or 𝐴𝑃4 in the AP selection stage,
then if its deadline cannot be satisfied, the selected AP would further
redistribute the workloads of 𝐴 among the neighbors of the AP. For
a better understanding of AP selection and workload redistribution in
the edge collaboration framework, we start from analyzing its offline
scenario with the known network conditions and resource situations
of the edge servers. Now, we model the AP selection and workload
distribution in detail.

AP Selection. For request 𝑅𝑡
𝑖 produced by user 𝑢𝑖 at slot 𝑡, 𝑢𝑖 can only

offload part of its workload to the APs that (1) can be directly accessed
by it, and (2) are configured with the corresponding service 𝑚𝑅𝑡

𝑖
. More

formally, denote by 𝐴𝑃 𝑡
𝑖 the set of such APs, i.e.,

 𝑡
𝑖 =  (𝑢𝑖) ∩

{

𝐴𝑃𝑗 |𝑆
𝑅𝑡
𝑖 = 1

}

. (1)
4

𝑗

Table 2
Main notations used in this paper.

Notation Meaning

𝑟𝑑𝑙 , 𝑟𝑢𝑙 The available bandwidth of uplink and downlink
 The set of APs (edge servers)
 The set of mobile users
 The set of services
 The set of time slots
|| The cardinality of set 
𝑙(𝑗,𝑘) The propagation delay between 𝐴𝑃𝑗 and 𝐴𝑃𝑘
 (𝑥) The set of direct neighbors of 𝑥
𝑅𝑡

𝑖 The type of request 𝑅𝑖 released by user 𝑈𝑖 at slot 𝑡
𝑑𝑑𝑙𝑡𝑖 The deadline of 𝑅𝑡

𝑖
𝜔 # of clock cycles a microprocessor performs per byte
𝐵𝑡
𝑖 The total bytes of the input data of 𝑅𝑡

𝑖
𝑊 𝑡

𝑖 The total workloads of 𝑅𝑡
𝑖

𝑆 𝑖
𝑗 Indicates whether 𝐴𝑃𝑗 has service 𝑚𝑖

𝑐𝑖𝑗 # of cores assigned to service 𝑚𝑖 in 𝐴𝑃𝑗

𝐶𝑗 # of cores in 𝐴𝑃𝑗
𝑄𝑡

(𝑗,𝑖) The FCFS queue for service 𝑚𝑖 on 𝐴𝑃𝑗 at slot 𝑡
𝑇 𝑡
𝑖 The completion time of 𝑅𝑡

𝑖
𝑋𝑡

(𝑖,𝑗) Indicates whether 𝑢𝑖 selects 𝐴𝑃𝑗 ∈  𝑡
𝑖 for offloading at time slot 𝑡

𝑌 𝑡
(𝑖,𝑗) % of the workloads of 𝑅𝑡

𝑖 processed at 𝐴𝑃𝑗

𝑌 𝑡
(𝑖,𝑗,𝑘) % of the workloads of 𝑅𝑡

𝑖 processed at 𝐴𝑃𝑘 ∈  𝑡
𝑖

We use a binary variable 𝑋𝑡
(𝑖,𝑗) to denote whether 𝑢𝑖 selects 𝐴𝑃𝑗 ∈  𝑡

𝑖
for offloading at time slot 𝑡, where 𝑋𝑡

(𝑖,𝑗) = 1 (resp. 0) indicates that
𝐴𝑃𝑗 is (resp. is not) selected. We have ∑

𝐴𝑃𝑗∈ 𝑡
𝑖
𝑋𝑡

(𝑖,𝑗) = 1. If no
workload redistribution is performed, the completion time 𝑇 𝑡

𝑖 of 𝑅𝑡
𝑖

consists of four parts: the upload time 𝑇 (𝑖,𝑗,𝑡)
𝑢𝑝 , the queuing time 𝑇 (𝑖,𝑗,𝑡)

𝑞𝑢𝑒𝑢𝑒 ,
the processing time 𝑇 (𝑖,𝑗,𝑡)

𝑝𝑟𝑜𝑐 , and the download time 𝑇 (𝑖,𝑗,𝑡)
𝑑𝑜𝑤𝑛 . Denote by 𝐵𝑡

𝑖
and 𝐵𝑡

𝑖
′ the sizes of input data and results of 𝑅𝑡

𝑖, respectively. Let 𝑟(𝑖𝑗)𝑢𝑙
and 𝑟(𝑖𝑗)𝑑𝑙 be the link bandwidth of uplink and downlink, respectively.
Then, we have

𝑇 (𝑖,𝑗,𝑡)
𝑢𝑝 =

∑

𝐴𝑃𝑗∈ 𝑡
𝑖

𝑋𝑡
(𝑖,𝑗)

𝐵𝑡
𝑖

𝑟(𝑖𝑗)𝑢𝑙

, (2)

𝑇 (𝑖,𝑗,𝑡)
𝑞𝑢𝑒𝑢𝑒 =

∑

𝐴𝑃𝑗∈ 𝑡
𝑖

∑

𝑞∈𝑄𝑡
(𝑗,𝑅𝑡𝑖)

𝑋𝑡
(𝑖,𝑗)

𝑊𝑞

𝑐
𝑅𝑡
𝑖

𝑗 𝑓
, (3)

𝑇 (𝑖,𝑗,𝑡)
𝑝𝑟𝑜𝑐 =

∑

𝐴𝑃𝑗∈ 𝑡
𝑖

𝑋𝑡
(𝑖,𝑗)

𝑊 𝑡
𝑖

𝑐
𝑅𝑡
𝑖

𝑗 𝑓
, (4)

𝑇 (𝑖,𝑗,𝑡)
𝑑𝑜𝑤𝑛 =

∑

𝐴𝑃𝑗∈ 𝑡
𝑖

𝑋𝑡
(𝑖,𝑗)

𝐵𝑡
𝑖
′

𝑟(𝑖𝑗)𝑑𝑙

, (5)

where 𝑄𝑡
(𝑗,𝑅𝑡

𝑖)
is the FCFS queue for service 𝑅𝑡

𝑖 in edge server 𝐴𝑃𝑗 ,

𝑐
𝑅𝑡
𝑖

𝑗 represents the number of cores assigned to service 𝑅𝑡
𝑖 in 𝐴𝑃𝑗 ,

and 𝑊 𝑡
𝑖 = 𝜔𝐵𝑡

𝑖 is the total workload of 𝑅𝑡
𝑖. If 𝑡 + 𝑇 (𝑖,𝑗,𝑡)

𝑢𝑝 + 𝑇 (𝑖,𝑗,𝑡)
𝑞𝑢𝑒𝑢𝑒 +

𝑇 (𝑖,𝑗,𝑡)
𝑝𝑟𝑜𝑐 + 𝑇 (𝑖,𝑗,𝑡)

𝑑𝑜𝑤𝑛 ≤ 𝑑𝑑𝑙𝑡𝑖 , i.e., 𝑅𝑡
𝑖 can be finished before its deadline, then

no workload redistribution is needed. Otherwise, we have to make
workload redistribution.

Workload Redistribution. We redistribute the workload of 𝑅𝑡
𝑖 among

the direct neighboring APs of the selected AP in AP Selection. For each
𝐴𝑃𝑗 ∈  𝑡

𝑖, we define the set of its direct neighboring APs, each of
which is configured with the corresponding service 𝑚𝑅𝑡

𝑖
, as follows:

 𝑡
(𝑖,𝑗) =  (𝐴𝑃𝑗) ∩

{

𝐴𝑃𝑘|𝑆
𝑅𝑡
𝑖

𝑘 = 1
}

. (6)

Without loss of generality, we use 𝑌 𝑡
(𝑖,𝑗) and 𝑌 𝑡

(𝑖,𝑗,𝑘) to represent the
percentage of workload to be processed at 𝐴𝑃𝑗 and 𝐴𝑃𝑘, ∀𝐴𝑃𝑘 ∈  𝑡

(𝑖,𝑗).
Therefore, the selected 𝐴𝑃𝑗 leaves 𝑌 𝑡

(𝑖,𝑗)𝑊
𝑡
𝑖 units of workload for its local

processing, and sends 𝑌 𝑡
(𝑖,𝑗,𝑘)𝐵

𝑡
𝑖 units of input for each 𝐴𝑃𝑘 ∈  𝑡

(𝑖,𝑗)
simultaneously, after which 𝐴𝑃𝑘 puts this workload at the end of its
local queue 𝑄𝑡

(𝑘,𝑅𝑡
𝑖)

and processes the workloads in the queue in a
FCFS manner. Therefore, for this part of workload of 𝑅𝑡 that is sent to
𝑖

Computer Networks 184 (2021) 107655N. Chen et al.

p
c
r
b

𝑇

𝑇

𝑇

D
o

𝑇

F
𝑇

C
w

𝑇

b
s
i
u
T
d
e
t

d
s
e

4

a
m
t
f

4

i
l
t
s
i
F

d
𝑟

neighbor servers, it experiences another four phases: being uploaded
from 𝐴𝑃𝑗 to 𝐴𝑃𝑘, waiting in the queue of service 𝑅𝑡

𝑖 in 𝐴𝑃𝑘, being
rocessed by 𝐴𝑃𝑘, and being downloaded from 𝐴𝑃𝑘 to 𝐴𝑃𝑗 . The time
onsumed by these four phases are 𝑇 (𝑖,𝑗,𝑘,𝑡)

𝑢𝑝 , 𝑇 (𝑖,𝑗,𝑘,𝑡)
𝑞𝑢𝑒𝑢𝑒 , 𝑇 (𝑖,𝑗,𝑘,𝑡)

𝑝𝑟𝑜𝑐 , and 𝑇 (𝑖,𝑗,𝑘,𝑡)
𝑑𝑜𝑤𝑛 ,

espectively. Note that, we use 𝑙(𝑖,𝑗) to denote the propagation delay
etween 𝐴𝑃𝑖 and 𝐴𝑃𝑗 . Therefore,

(𝑖,𝑗,𝑘,𝑡)
𝑢𝑝 = 𝑇 (𝑖,𝑗,𝑘,𝑡)

𝑑𝑜𝑤𝑛 = 𝑙(𝑗,𝑘), (7)

(𝑖,𝑗,𝑘,𝑡)
𝑞𝑢𝑒𝑢𝑒 =

∑

𝐴𝑃𝑗∈ 𝑡
𝑖

∑

𝑞∈𝑄𝑡
(𝑘,𝑅𝑡𝑖)

𝑋𝑡
(𝑖,𝑗)

𝑊𝑞

𝑐
𝑅𝑡
𝑖

𝑘 𝑓
, (8)

(𝑖,𝑗,𝑘,𝑡)
𝑝𝑟𝑜𝑐 =

∑

𝐴𝑃𝑗∈ 𝑡
𝑖

𝑋𝑡
(𝑖,𝑗)

𝑌 𝑡
(𝑖,𝑗,𝑘)𝑊

𝑡
𝑖

𝑐
𝑅𝑡
𝑖

𝑘 𝑓
. (9)

enote by 𝑇 (𝑖,𝑡)
𝑗→𝑘 the time consumption of redistributing 𝑌 𝑡

(𝑖,𝑗,𝑘)𝑊
𝑡
𝑖 units

f workload from 𝐴𝑃𝑗 to 𝐴𝑃𝑘. Thus,
(𝑖,𝑡)
𝑗→𝑘 = 𝑇 (𝑖,𝑗,𝑘,𝑡)

𝑢𝑝 + 𝑇 (𝑖,𝑗,𝑘,𝑡)
𝑞𝑢𝑒𝑢𝑒 + 𝑇 (𝑖,𝑗,𝑘,𝑡)

𝑝𝑟𝑜𝑐 + 𝑇 (𝑖,𝑗,𝑘,𝑡)
𝑑𝑜𝑤𝑛 . (10)

or 𝐴𝑃𝑗 itself, it has to process 𝑌 𝑡
(𝑖,𝑗)𝑊

𝑡
𝑖 units of workload. Denote by

(𝑖,𝑡)
𝑗→𝑗 the time consumption of such local processing. It is easy to see,

𝑇 (𝑖,𝑡)
𝑗→𝑗 =

∑

𝐴𝑃𝑗∈ 𝑡
𝑖

𝑋𝑡
(𝑖,𝑗)

⎛

⎜

⎜

⎜

⎝

∑

𝑞∈𝑄𝑡
(𝑗,𝑅𝑡𝑖)

𝑊𝑞

𝑐
𝑅𝑡
𝑖

𝑘 𝑓
+
𝑌 𝑡
(𝑖,𝑗)𝑊

𝑡
𝑖

𝑐
𝑅𝑡
𝑖

𝑘 𝑓

⎞

⎟

⎟

⎟

⎠

. (11)

Formulation. Based on the above modeling, we now can define the
ompletion Time 𝑇 𝑡

𝑖 of request 𝑅𝑡
𝑖. A request is completed if all of its

orkloads have been processed. If 𝑡+𝑇 (𝑖,𝑗,𝑡)
𝑢𝑝 +𝑇 (𝑖,𝑗,𝑡)

𝑞𝑢𝑒𝑢𝑒+𝑇
(𝑖,𝑗,𝑡)
𝑝𝑟𝑜𝑐 +𝑇 (𝑖,𝑗,𝑡)

𝑑𝑜𝑤𝑛 ≤ 𝑑𝑑𝑙𝑡𝑖 ,

𝑡
𝑖 = 𝑇 (𝑖,𝑗,𝑡)

𝑢𝑝 + 𝑇 (𝑖,𝑗,𝑡)
𝑞𝑢𝑒𝑢𝑒 + 𝑇 (𝑖,𝑗,𝑡)

𝑝𝑟𝑜𝑐 + 𝑇 (𝑖,𝑗,𝑡)
𝑑𝑜𝑤𝑛 ; (12)

otherwise,

𝑇 𝑡
𝑖 = 𝑇 (𝑖,𝑗,𝑡)

𝑢𝑝 + max

{

𝑇 (𝑖,𝑡)
𝑗→𝑗 , max

𝐴𝑃𝑘∈ 𝑡
(𝑖,𝑗)

{

𝑇 (𝑖,𝑡)
𝑗→𝑘

}

}

+ 𝑇 (𝑖,𝑗,𝑡)
𝑑𝑜𝑤𝑛 . (13)

We use a binary variable 𝑍𝑡
(𝑖,𝑗) to denote whether the Completion Time

𝑇 𝑡
𝑖 of request 𝑅𝑡

𝑖 is smaller than the 𝑑𝑑𝑙𝑡𝑖, where 𝑍𝑡
(𝑖,𝑗) = 1 (resp. 0)

indicates that 𝑇 𝑡
𝑖 is smaller (resp. is bigger) than the 𝑑𝑑𝑙𝑡𝑖.

To sum up, we are committed to maximizing the number of requests
that finish before deadlines, thus we get the following optimization
problem ():

max
𝑡∈ ,𝑖∈| |

∑

𝑡∈
𝑍𝑡

(𝑖,𝑗) (14)

𝑠.𝑡.
∑

𝐴𝑃𝑗∈ 𝑡
𝑖

𝑋𝑡
(𝑖,𝑗) = 1,∀𝑖 ∈ | |,∀𝑡 ∈  , (15)

∑

𝐴𝑃𝑗∈ 𝑡
𝑖

𝑋𝑡
(𝑖,𝑗)[

∑

𝐴𝑃𝑘∈ 𝑡
(𝑖,𝑗)

𝑌 𝑡
(𝑖,𝑗,𝑘)+𝑌

𝑡
(𝑖,𝑗)] = 1, (16)

∑

𝑚𝑖∈
𝑐𝑖𝑗 ≤ 𝐶𝑗 ,∀𝐴𝑃𝑗 ∈  , (17)

𝑋𝑡
(𝑖,𝑗) ∈ {0, 1} , 𝑌 𝑡

(𝑖,𝑗,𝑘) ∈ [0, 1] , (18)

Eq. (15) ensures that the user can only connect to one AP at one time
slot, Eq. (16) implies the total percentage assigned to the current server
and its neighboring servers is 1, Eq. (17) is the resource limitation of
each server.

Considering that the target variables contain both integers and
continuous decimals, we define the problem () as a mixed inte-
ger problem (MIP), which is a proved NP-complete problem. Even
though this problem has a pseudo-polynomial solution, it is challenging
to achieve fast and effective scheduling with such compute-intensive
bursty requests, not to mention that the users are arriving and leaving
dynamically. Inspired by the great success in decision-making achieved
by the deep reinforcement learning in dynamic environments, we pro-
5

pose a DRL-based method to solve this problem. Nonetheless, this
section concluding system and formulation is essential to our DRL
model. For example, the total delay 𝑇 𝑡

𝑖 in Eqs. (12) and (13) are key
vital elements for the reward definition, and the final simulation is
established based on this system model.

4. DRL-based algorithm design

In this section, we first introduce the basic learning mechanism
of DeepLoad. Then, we present how we transform the AP selection
and workload redistribution into a learning task. Finally, we design a
DRL-based algorithm in details.

4.1. Basic learning mechanism

Unlike the existing request scheduling strategies using predefined
rules or specific heuristics, DRL is committed to learning an effective
policy from the past experiences based on the current state and instant
reward. To better understand the learning mechanism of DRL, we show
the workflow of DeepLoad as illustrated in Fig. 5. A RL-agent interacts
with the environment, where the RL-agent is the main component for
making scheduling decisions, and the environment is an abstraction
that integrates the information about edge network, mobile users, edge
servers, and diverse requests. The RL-agent can only observe a small
part of the environment, which is called state. In this paper, we view
each mobile device as a RL-agent, the known information about network
and edge server as state, and the scheduling decision as action. At each
time slot 𝑡, the RL-agent observes a state 𝑠𝑡 and chooses an action 𝑎𝑡
ased on the specific policy 𝜋. When the action is done, the current
tate will transit to the next state 𝑠𝑡+1 and the agent will receive an
nstant reward 𝑟𝑡. Through constant interaction with the environment
ntil done, the RL-agent is likely to get higher accumulated rewards.
he objective of DRL is to find the best policy 𝜋 (i.e. action probability
istribution in A3C) mapping a state to an action that maximizes the
xpected discounted accumulated reward as 𝐄

[

∑𝑡0+| |

𝑡=𝑡0
𝛾 𝑡𝑟𝑡

]

, where 𝑡0 is
he current time and 𝛾 ∈ (0, 1] is a factor to discount the future reward.

Note that each RL-agent (i.e., a mobile user) makes scheduling
ecisions based on probability distributions (i.e. policy 𝜋) rather than
pecific actions, which can potentially avoid excessive loads on a single
dge server.

.2. Algorithm design

Due to the lack of future knowledge and the state transition prob-
bility matrix, as well as the discrete decision space, we propose the
odel-free DRL-based DeepLoad, which is trained using a state-of-

he-art actor–critic DRL model called A3C. We introduce the detailed
unctionality design as follows.

.2.1. State space
The state is the observation of a RL-agent (i.e. mobile device or user

n our scenario) from the environment. The RL-agent aims to constantly
earn policies from historical information to approach the perspective of
he God (i.e. have future and global knowledge), thus a comprehensive
tate is critical to the decision-making efficiency. We take the known
nformation of network, edge server and request into consideration as
ig. 6 shows. Specifically, we list the components as follows.
⊳ Estimated bandwidth vector for uplink 𝑏𝑏𝑏𝑢𝑢𝑢 and downlink 𝑏𝑏𝑏𝑑𝑑𝑑 . We

enote them as 𝑏𝑏𝑏𝑢𝑢𝑢 =
⟨

𝑟1𝑢𝑙 , 𝑟
2
𝑢𝑙 ,… , 𝑟𝑁𝑢𝑙

⟩

and 𝑏𝑏𝑏𝑑𝑑𝑑 =
⟨

𝑟1𝑑𝑙 , 𝑟
2
𝑑𝑙 ,… , 𝑟𝑁𝑑𝑙

⟩

, where
𝑖
𝑢𝑙 is the uplink bandwidth from local user to 𝐴𝑃𝑖, and 𝑟𝑗𝑑𝑙 represents

the downlink bandwidth from 𝐴𝑃𝑗 . We set 𝑟𝑘𝑢𝑙 = 𝑟𝑘𝑑𝑙 = 0 if user 𝑢𝑖 is
not within the service area of 𝐴𝑃𝑘. Considering that we have no means
to get the real-time bandwidth for current. Many requests are initiated
from mobile devices over cellular networks like LTE, which experience
frequent bandwidth fluctuation [19]. To illustrate the variability of
bandwidth, we depict two network traces from the Mahimahi [20]

project as Fig. 4 shows. Across the upload and download traces, we

Computer Networks 184 (2021) 107655N. Chen et al.
Fig. 4. Bandwidth fluctuation over time. (a) The bandwidth of uplink and downlink.
(b) The 𝑌 -axis denotes the fraction of slots, in which the bandwidth is within
[80%, 120%] of the average bandwidth of past 1, 3 or 5 slots.

Fig. 5. Illustration of the basic learning mechanism. RL-agent trains the policy network
through continuous interaction with the environment. For each state observed from the
environment, the RL-agent can make a quick decision based on the action distribution.

made the following observations: (1) Periods of extreme low/high are
uncommon: only 14.5% of the time, the upload bandwidth is 0 or
larger than 10 𝑀𝑏𝑝𝑠, and 14.9% for the download bandwidth; (2) The
bandwidth of the next slot is closely related to the values of past several
slots: as Fig. 4(b) shows, for uploading capacity, 76.3% slots own less
than 20% bandwidth variation compared to the previous one slot,
and it reaches 89.2% when referring to past five slots. The download
capacity shares the similar rule with upload capacity. Hence, we view
the weighted bandwidth of previous 𝑘 slots as the estimated bandwidth
of slot 𝑡 + 1,

𝑟𝑖𝑢𝑙(𝑡 + 1) =
𝑡

∑

𝑗=𝑡−𝑘+1
𝜔𝑗𝑟

𝑖
𝑢𝑙(𝑗), (19)

where 𝜔𝑚 < 𝜔𝑛 if 𝑚 < 𝑛, and ∑

𝜔𝑗 = 1. We estimate the downlink
bandwidth in the similar method.

⊳ Estimated propagation delays of inter-APs. We denote it as 𝑏𝑏𝑏𝑝𝑝𝑝 =
⟨

𝑙(𝑖,𝑗)|𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ {1, 2,… , 𝑁}
⟩

. Practically, the APs are connected with
each other through S1 interface of Core Network (rarely X2 interface
for transferring amounts of data). Hence, it remains relatively stable.
To reflect the variance of different APs pair, we still view it as an input
for DeepLoad.

⊳ Pending workload 𝑤𝑤𝑤 of each edge server, 𝑤𝑤𝑤 = ⟨𝑤1, 𝑤2,… , 𝑤𝑁 ⟩.
Assume that each AP periodically and frequently sends a heartbeat
message to the users in its proximity, which includes the amount of
workloads to be processed in each queue on this server. Although it is
a delayed message relative to the current, it makes sense to evaluate
the pending workload.

⊳ Critical features of current request. The input size 𝐵 of request af-
fects the transmission delay, the workload 𝑊 determines the processing
delay, and deadline 𝑑𝑑𝑙 represents the user’s expectation.

We integrate the above components together and present the state
as 𝑠𝑡 =

{

𝑏𝑏𝑏𝑢𝑢𝑢, 𝑏𝑏𝑏𝑑𝑑𝑑 , 𝑏𝑏𝑏𝑝𝑝𝑝, 𝑤𝑤𝑤, 𝐵, 𝑊 , 𝑑𝑑𝑙
}

.

4.2.2. Policy
In our proposed DeepLoad, a RL-agent needs to take an action for

request scheduling when receiving a state 𝑠 . In our scenario, a request
6

𝑡

goes through two stages (i.e. AP selection and workload redistribution)
from its generation to completion, and the second stage relies largely
on the first stage, because the servers in the second stage are adjacent to
the server in the first stage. Thus, we jointly consider both of AP selec-
tion and workload redistribution. Thus the action space is represented
as

{

𝐴𝑃𝑘, 𝐴𝑃 1
𝑘 ,… , 𝐴𝑃 𝑧

𝑘 , 𝑃𝑘, 𝑃
1
𝑘 ,… , 𝑃 𝑧

𝑘
}

, where 𝐴𝑃𝑘 is the first AP, 𝑃𝑘 is
the percentage of workloads processed at 𝐴𝑃𝑘, 𝐴𝑃 𝑧

𝑘 and 𝑃 𝑧
𝑘 denote a

neighboring server of 𝐴𝑃𝑘 and the corresponding offloading proportion,
thus, 𝑃𝑘 +

∑

1≤𝑖≤𝑧 𝑃
𝑖
𝑘 = 1 and 𝑃𝑘, 𝑃 𝑖

𝑘 ∈ {0, 1,… , 100}. Therefore, the
action space is bounded. However, the value of the workloads of a
request is continuous and unbounded, so there are infinite (𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛)
pairs. We cannot store them in tabular form and solve the problem
using traditional methods, e.g., Q-learning and SARSA. Fortunately, the
A3C model addresses this issue perfectly, which uses a neural network
[9] to represent a policy 𝜋, and the adjustable parameter of the neural
network is referred to as the policy parameter 𝜃. Therefore, we can
present the policy as 𝜋

(

𝑎𝑡|𝑠𝑡; 𝜃
)

→ [0, 1], indicating the probability of
taking action 𝑎𝑡 at state 𝑠𝑡.

Note that the different types of requests have different policies; if
there are || types of requests, || policies are needed.

4.2.3. Reward
Once applying an action 𝑎𝑡 to the state 𝑠𝑡, a RL-agent will receive

an instant reward 𝑟𝑡 from the environment. Recall that in the problem
formulation, our optimization objective is to maximize the number of
requests that finish before their deadlines. If the deadline can be met
in the first stage (i.e., AP selection), the second stage can be skipped
directly. To mitigate the risk of privacy leakage and the expensive com-
munication cost of inter-APs, users may prefer to execute their requests
without edge collaboration. However, when the estimated delay of the
first stage is worse than the deadline, the workload redistribution stage
is needed. To reflect the risk of privacy leakage and the cost of edge
collaboration, we define the reward as

𝑟𝑒𝑤𝑎𝑟𝑑=

⎧

⎪

⎨

⎪

⎩

𝑑𝑑𝑙𝑡𝑖−𝑇
𝑡
𝑖

𝑑𝑑𝑙𝑡𝑖
, if redistribution is performed,

𝑑𝑑𝑙𝑡𝑖−𝑇
𝑡
𝑖

𝑇 𝑡
𝑖

, otherwise,
(20)

where 𝑑𝑑𝑙𝑡𝑖 is the attached deadline of 𝑢𝑖 at time slot 𝑡, and 𝑇 𝑡
𝑖 is the

completion time of 𝑢𝑖. 𝑇 𝑡
𝑖 is modeled in details in Section 3. If 𝑃𝑘 in the

action is 100, then the total workload is executed in the edge server
deployed at the selected AP. Apparently, the reward may be a negative
when the 𝑇 𝑡

𝑖 cannot meet the 𝑑𝑑𝑙𝑡𝑖 , which is acceptable on account of
considering a maximized accumulative reward. According to Eq. (20),
for the same completion time 𝑇 𝑡

𝑖 , the reward without the workload
redistribution stage is much more attractive.

4.2.4. DRL model training methodology
The configuration space is bounded, but the sophisticated state

space seems infinite, thus there are endless (𝑠𝑡, 𝑎𝑡) pairs. Instead of
storing the value of each (𝑠𝑡, 𝑎𝑡) pair in tabular form, e.g. 𝑄-table, we
adopt A3C, which uses a neural network to represent a policy 𝜋 as Fig. 6
shows, and the adjustable parameter of the neural network is referred
to as the policy parameter 𝜃. Therefore, we can present the policy as
𝜋
(

𝑎𝑡|𝑠𝑡; 𝜃
)

→ [0, 1], indicating the probability of taking action 𝑎𝑡 at state
𝑠𝑡. The objective of DRL is to find a best policy 𝜋 mapping a state to an
action that maximizes the expected accumulative discounted reward as

𝐽 (𝜃) = 𝐄
⎡

⎢

⎢

⎣

𝑡0+| |

∑

𝑡=𝑡0

𝛾 𝑡𝑟𝑡
⎤

⎥

⎥

⎦

, (21)

where 𝑡0 is the current time and 𝛾 ∈ (0, 1] is a factor to discount the
future reward.

Computer Networks 184 (2021) 107655N. Chen et al.
Fig. 6. The Actor–Critic algorithm that DeepLoad uses to generate scheduling policies.

4.2.5. Policy gradient training
The actor–critic network used by DeepLoad is trained with policy

gradient method, whose key idea is to estimate the gradient of the ex-
pected total reward by observing the trajectories of executions obtained
by following the policy. We highlight the key steps of the algorithm,
focusing on the intuition. The policy gradient of 𝐽 (𝜃) with respect to
𝜃, to be used for policy network update for slot 𝑡, can be calculated as
follows [21]:

∇𝜽𝐽 (𝜽)=E𝜋𝜽

[

∑

𝑡∈
∇𝜽 log

(

𝜋𝜽
(

𝑠𝑡, 𝑎𝑡
))

𝐴𝜋𝜽
(

𝑠𝑡, 𝑎𝑡
)

]

, (22)

where 𝐴𝜋𝜽
(

𝑠𝑡, 𝑎𝑡
)

is the advantage function that represents the gap
between the expected accumulative reward when we deterministically
select 𝑎𝑡 at state 𝑠𝑡 following 𝜋𝜃 and the expected reward for actions
drawn from policy 𝜋𝜽. Indeed, the advantage function reflects how
much better a current specific action is compared to the ‘‘average
action" taken based on the policy. Intuitively, we reinforce the actions
with positive advantage value 𝐴𝜋𝜽 (𝑠, 𝑎), but degrade the actions with
negative advantage value 𝐴𝜋𝜽 (𝑠, 𝑎).

In particular, the RL-agent extracts a trajectory of scheduling de-
cisions for the bursty requests and uses the empirically computed
advantage 𝐴

(

𝑠𝑡, 𝑎𝑡
)

as an unbiased estimated 𝐴𝜋𝜽
(

𝑠𝑡, 𝑎𝑡
)

. The update
rule of actor network parameter 𝜃 follows the policy gradient,

𝜃 ← 𝜃 + 𝛼
∑

𝑡∈
∇𝜃 log𝜋𝜃

(

𝑠𝑡, 𝑎𝑡
)

𝐴
(

𝑠𝑡, 𝑎𝑡
)

, (23)

where 𝛼 is the learning rate. The marrow behind this update law is
summarized as follows, the gradient direction ∇𝜃 log𝜋𝜃

(

𝑠𝑡, 𝑎𝑡
)

indicates
how to change parameter 𝜃 to improve 𝜋𝜃

(

𝑠𝑡, 𝑎𝑡
)

(i.e., the probability
of action 𝑎𝑡 at state 𝑠𝑡). Eq. (23) goes a step along the gradient descent
direction. The specific step size is up to the advantage value 𝐴𝜋𝜽

(

𝑠𝑡, 𝑎𝑡
)

.
Hence, the goal of each update is to reinforce actions that empirically
have better feedbacks. To compute the advantage value 𝐴

(

𝑠𝑡, 𝑎𝑡
)

for a
given sample, we need to get the estimated value function 𝑣𝜋𝜽 (𝑠), 𝑖.𝑒.,
the total expected reward starting at state 𝑠 following the policy 𝜋𝜽. As
Fig. 6 shows, the role of critic network is to learn an estimated 𝑣𝜋𝜽 (𝑠)
from observed rewards. We update the critic network parameters 𝜃𝑣
based on the Temporal Difference [22] method,

𝜃𝑣←𝜃𝑣−𝛼′
∑

𝑡
∇𝜃𝑣

(

𝑟𝑡+𝛾𝑉 𝜋𝜃
(

𝑠𝑡+1; 𝜃𝑣
)

−𝑉 𝜋𝜃
(

𝑠𝑡; 𝜃𝑣
))2 , (24)

where 𝑉 𝜋𝜃
(

𝑠𝑡; 𝜃𝑣
)

is the estimated 𝑣𝜋𝜽
(

𝑠𝑡
)

that is produced by the critic
network, and 𝛼′ is the learning rate. We take a specific experience
⟨

𝑠 , 𝑎 , 𝑟 , 𝑠
⟩

– take action 𝑎 for state 𝑠 , obtain instant reward 𝑟 , and
7

𝑡 𝑡 𝑡 𝑡+1 𝑡 𝑡 𝑡
Fig. 7. The training methodology of A3C model. A3C adopts multi-thread technology
to train the actor–critic network. Each thread, which can be viewed as a RL-agent,
trains its own network independently, and interacts with the main network through
pull–push method.

transit to next state 𝑠𝑡+1– as an example, we estimate the advantage
value 𝐴

(

𝑠𝑡, 𝑎𝑡
)

as 𝑟𝑡 + 𝛾𝑉 𝜋𝜃
(

𝑠𝑡+1; 𝜃𝑣
)

− 𝑉 𝜋𝜃
(

𝑠𝑡; 𝜃𝑣
)

. Note that the critic
network does nothing to train the actor network other than evaluate the
policy of the actor network. In the actual AR scenario, only the actor
network is involved in making configuration decisions.

To reach an adequate exploration for the RL agent during training
to discover better policies, thereby reducing the risk of falling into
suboptimal, we add an entropy regularization [15] term to encourage
exploration. This practice is significant to help the agent converge to a
fine policy. Correspondingly, we modify Eq. (23) to be

𝜃←𝜃+𝛼
∑

𝑡
∇𝜃 log𝜋𝜃

(

𝑠𝑡,𝑎𝑡
)

𝐴
(

𝑠𝑡,𝑎𝑡
)

+𝛽∇𝜃𝐻
(

𝜋𝜃
(

⋅|𝑠𝑡
))

, (25)

where 𝛽 is entropy weight that is set to a large value and decreases over
time to emphasize improving rewards, and 𝐻(⋅) is the policy entropy
to encourage exploration by pushing 𝜃 in the direction with higher
entropy.

4.2.6. Parallel training
To further enhance exploration and speed up training. As shown

in Fig. 7, we use a parallel approach to obtain abundant training
samples quickly. We start 𝑛 threads (i.e. agents) at the same time, and
adopt diverse environment settings (e.g., diverse network traces and
AR videos). Different agents are likely to experience different states
and transitions, thus avoiding the correlation. Specifically, each agent
continuously collects their samples (tuple

{

𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1
}

), and uses the
actor–critic algorithm to compute a gradient and perform a gradient
descent step as Eqs. (24) and (25), independently. Then, each agent
pushes its actor parameters to the central agent, which integrates the
parameters, and generates a global actor network. Finally, each agent
pulls the global model from the central agent, and starts the next
training episode until the global actor network is convergent. Since
the actor–critic network has been well trained, we can take a fast and
accurate action based on the action probability distribution for each
encoding slot.

5. Performance evaluation

In this section, we validate the performance of DeepLoad with
extensive data-driven simulations. In addition, we verify its efficiency
through several control experiments.

5.1. BRS simulator

An ideal well-trained DeepLoad needs numerous samples. It is unre-
alistic to train DeepLoad through continuous trial and error in the real

Computer Networks 184 (2021) 107655N. Chen et al.

a
(
s
n
n
a
i
e
d

𝑊
e
p
f

Table 3
Initial parameter setting.

Types Parameters

Input size [3000, 4000]
Total workload [400, 600]
Pending workload [125, 175]
Propagation delay of inter-APs [25, 35]

Table 4
Actor–critic network design of DeepLoad.

Types Actor network Critic network

Input layer 4 × 1D-CNN+3 4 × 1D-CNN+3
Hidden layer 400 × 400 × 400 400 × 400 × 400
Output layer |𝑎𝑐𝑡𝑖𝑜𝑛_𝑠𝑝𝑎𝑐𝑒| 1

scenario due to the unbearable cost. Instead, we design a BRS (Bursty
Requests Scheduler) simulator that best matches the real scenario.

First of all, we depict the distribution of APs as well edge servers,
and simulate the arrival model of bursty requests. Several vital char-
acteristics of Shanghai taxi trajectory data set [23] that inspire us are
as follows: (1) it records the real-time GPS location (i.e., the longitude
and latitude) of each taxi; (2) it documents the time stamps of entering
and leaving the common infrastructures such as stations or intersections
for each taxi. Hence, the variant GPS location of each taxi can be
applied to show the user’s mobility. Based on the taxi’s location in the
same slot, we mark several regions called Point of Interests (PoIs) that
have crowded taxis with similar location, and these PoIs are perfect
candidates for deploying APs and edge servers. Practically, the PoIs is
likely to be a station or an intersection. Note that each taxi may be
in the coverage of several PoIs simultaneously. For example, the stops
are close to intersections. What is more, we count the number of taxis
residing in each PoI at each slot based on the time stamps, and thus
we use the residing taxis at each slot to represent the bursty requests
identified by tuple ⟨𝑊 ,𝐵, 𝑑𝑑𝑙⟩. Specifically, we select the data records
for 28 February, 2007. By preprocessing, we know the number of PoIs
is 12. Each time slot is 5 min, thus a day has 288 time slots, which form
an episode. Note that this time slot of 5 min is just for sampling, and
the actual time slot toward bursty request is far less than it, perhaps
only 1 s.

Furthermore, the initialization of requests (i.e., 𝐵, 𝑊 , 𝑑𝑑𝑙) as well
s edge servers, and the simulation of a dynamic edge environment
i.e. the time-variant network condition and server status) are also
upposed to be well-crafted. We introduce a general-used mechanism
amed transparent request offloading, in which every mobile user knows
othing about other users, including the location, the type of request,
nd not to mention the exact value of ⟨𝑊 ,𝐵, 𝑑𝑑𝑙⟩. This mechanism
s in line with the ideology of DRL, and the characteristic of edge
nvironment. Specifically, we model the fluctuation of uplink and
ownlink bandwidth (i.e., 𝑟𝑢𝑙 and 𝑟𝑑𝑙) in a trace-driven method from the

Mahimahi [20] project recorded the transmitted MTU-sized packed per
millisecond. We make some statistics and modifications, and obtain the
bandwidth per millisecond. In BRS, the input scale 𝐵, total workload

and deadline 𝑑𝑑𝑙 of request, and the pending workload 𝑤𝑞 in
ach edge server is initialized from uniform distribution with different
arameters as Table 3 shows. Particularly, we set the deadline 𝑑𝑑𝑙
rom range

[

𝐵
𝑟(𝑎𝑣𝑔) +

𝑊
𝑐(𝑎𝑣𝑔)−10,

𝐵
𝑟(𝑎𝑣𝑔) +

𝑊
𝑐(𝑎𝑣𝑔) +10

]

, where 𝑟(𝑎𝑣𝑔) is average
bandwidth, and 𝑐(𝑎𝑣𝑔) represents the average computing capability.

5.2. Training testbed and benchmark

We train the DeepLoad learning model using the A3C model. The
general Actor–Critic networks structure is illustrated as Fig. 6, they
share the same parameters of the input layer and hidden layer, but
output the action distribution and value, respectively. The detailed
design is listed in Table 4. To enhance the convergent rate and training
8

Fig. 8. Comparison of DeepLoad and other strategies. 𝑌 -axis denotes the fraction of
requests finished before deadlines (i.e. FoRf) in current episode.

Fig. 9. The effects of thread numbers on the results.

efficiency, we leverage two GeForce GTX TITAN Xp GPUs. In DeepLoad,
an episode including 288 slots can be viewed as a training sequence
in DRL. We set the following benchmarks to further evaluate the
performance of DeepLoad:

• SSP (Single Server Processing). Each request is processed only
in the server selected in AP selection. The user first calculates
the estimated delay for each accessible AP, and then selects the
optimal one.

• DSP (Double Server Processing). Each request is processed in the
server selected in AP selection and one of its adjacent server. The
user first calculates the estimated delay for each accessible AP,
and then selects the optimal one. If the estimated completion time
is bigger than the 𝑑𝑑𝑙, the selected AP will offload half of the
workload to one of its adjacent server with the most available
resources.

• LOCP (Link Optimal Collaborative Processing). In workload redis-
tribution, the selected AP chooses two neighboring servers with
the lowest propagation delay, and then offloads some percentages
of workloads to them. Note that the offloading proportions are the
same as the target proportions in the action chosen by DeepLoad.

• QOCP (Queue Optimal Collaborative Processing). The selected
AP selects two neighboring servers with the minimum amount of
pending workloads in the queue, and then offloads some percent-
ages of workloads to them. QOCP and DeepLoad have the same
target proportions.

• FCP (Fair Collaborative Processing). The selected AP selects two
neighboring servers and offload one third of the workloads to
them.

5.3. Effectiveness and impact factor of DeepLoad

In this subsection, we make a horizontal and vertical comparison
for DeepLoad. We first compare our model with benchmarks in the
following aspects to analyze its effectiveness. Then, we show the impact
of the inherent parameter setting of DeepLoad on the performance.

Computer Networks 184 (2021) 107655N. Chen et al.

5

c
u
R
o
t
m
s
p
d
b
r
e
i
w
i
g
f
r
F
v

5

m
t
d
w
a
G
D
b
w
d
w
l
l
g
r
c
s

6

6

o
p
h

D

c
i

A

o
S
R
C

Fig. 10. The effect of learning rate on the results.

.3.1. Effectiveness of DeepLoad
In our scenario, we aim to maximize the number of requests whose

ompletion times are ahead of their deadlines. Since the number of
sers at each time slot is dynamically changing, we use the Fraction of
equests finished (FoRf) before deadline to measure the effectiveness
f DeepLoad. As illustrated in Fig. 8, with the increasing number of
raining episodes, the FoRf of DeepLoad approaches 1, which implies al-
ost all of the requests can be completed before deadlines. As Fig. 8(a)

hows, even with an optimal AP selection, traditional SSP performs
oorly with a FoRf less than 0.5, which is largely due to the unpre-
ictable queuing time. DSP mitigates this dilemma, but it still performs
adly. The edge servers adopt FCFS such that each new incoming
equest is arranged at the end of the queue. As Fig. 8(b) shows, in the
arly episodes of training, Deepload focuses on exploration such that
ts average effectiveness is even inferior to LOCP, QOCP and FCP, yet
ith more training episodes, DeepLoad has a significant performance

mprovement and shows superiority to them. Note that DeepLoad can
reatly alleviate the burden produced by the bursty requests, but cannot
undamentally eliminate such burden, because there may be too many
equests that exceed the processing power of the LAN. Therefore, the
oRf of DeepLoad presents a fluctuating state but maintains at a high
alue.

.3.2. Impact factor
The internal parameter settings are critical to the model perfor-

ance. Take the number of parallel threads and the learning rate as
wo examples. We train our DeepLoad through 10,000 episodes under
ifferent thread numbers and learning rates. As described in Section 4,
e use a parallel approach (i.e. multithreading technology) to obtain
bundant training samples and adopt diverse environment settings.
enerally, the more threads the training adopts, the broader scope the
eepLoad can explore, and thus almost all exploratory sequences can
e gathered. In Fig. 9(a), the accumulated reward of DeepLoad trained
ith 40 threads surpasses the other two cases, while the final FoRf with
ifferent threads are almost the same as shown in Fig. 9(b). Secondly,
e show the relationship between the accumulated reward and the

earning rate in Fig. 10. It is clear to see that the model with a higher
earning rate reaches the peak interval faster (e.g. convergence) but
ains a more dramatic fluctuation. Generally, the selection of learning
ate depends on the system-level need. A high learning rate means fast
onvergence speed and high volatility, while a low learning rate means
low convergence speed and low volatility.

. Related work

.1. Scheduling compute-intensive requests with cooperative methods

Although the new emerging edge computing paradigm brings lots
f possibilities to process the compute-intensive requests efficiently by
ushing the services closer to the end users [1–3], it is challenging to
andle bursty requests via a single edge server. In [7], the authors
9

o

adopted an ARM big.LETTLE architecture, and aimed to minimize
the energy consumption through a better requests scheduling policy.
In [9], the authors proposed VideoStorm, a video analytics system that
explores the accuracy-resource trade-off in improving analytics quality
and lag. In [10], the authors proposed OREO, which jointly optimizes
dynamic service caching and task offloading to address service het-
erogeneity, unknown system dynamics, spatial demand coupling and
decentralized coordination. In [24], the authors propose a hierarchical
model with intra-fog and inter-fog resource management. In [25], the
authors proposed an effective task scheduling approach with stochastic
time cost for computation offloading in mobile edge computing. Some
other studies [8,26–28] focused on scheduling requests to either of local
device, single edge, or remote cloud for execution, while we propose
DeepLoad to process bursty requests through edge server collaboration.

6.2. DRL-based application

Recently, Deep Reinforcement Learning (DRL) has shown its supe-
riority in many fields. In [14], the authors first used Deep Q-Network
to learn policies from sensor input for decision making. In [29], the
authors presented a comprehensive application of DRL in commu-
nication and network. In [30,31], the authors adopted DQN-based
computation offloading strategies for IoT devices, which aim to achieve
automatic scheduling. In [32–35], the authors considered a multi-
user MEC system, and proposed A3C-based optimization framework to
tackle resource allocation for MEC. In [36], the authors used the A3C
algorithm to select the optimal bitrate for future video chunks purely
based on the past experience. In [37], the authors applied DRL to the
traffic engineering problem. In [38], the authors proposed ReLeS for
Multipath TCP, which supports a real-time packet scheduling. To our
best knowledge, DeepLoad is the first to apply DRL to solve the bursty
requests scheduling problem in edge computing environments.

7. Conclusion

In this paper, we consider a general edge scenario of bursty requests,
in which we aim to learn an efficient scheduling policy. We first
formulate it as a long-term optimization problem that maximizing the
number of requests finished before deadlines, which is referred to as a
NP-complete problem. Inspired by the great achievements in decision-
making of DRL in dynamic environments, we propose DeepLoad, an
intelligent scheduler for bursty requests via deep reinforcement learn-
ing in edge environments. Finally, based on the real data set, we
design a LAN simulator to collect abundant samples, and train the
actor–critic network with numerous episodes. In addition, we design
several control experiments, and further demonstrate the superiority of
DeepLoad compared to several baseline algorithms.

CRediT authorship contribution statement

Ning Chen: Conceptualization, Methodology, Software, Writing -
original draft. Sheng Zhang: Writing - review & editing, Project admin-
istration, Formal analysis. Jie Wu: Supervision, Validation. Zhuzhong
Qian: Resources, Investigation. Sanglu Lu: Resources.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

This work was supported in part by National Key R&D Program
f China (2017YFB1001801), NSFC (61872175, 61832008), Natural
cience Foundation of Jiangsu Province (BK20181252), Jiangsu Key
&D Program (BE2018116), the Fundamental Research Funds for the
entral Universities (14380060), and Collaborative Innovation Center

f Novel Software Technology and Industrialization.

Computer Networks 184 (2021) 107655N. Chen et al.
References

[1] P. Mach, Z. Becvar, Mobile edge computing: A survey on architecture and
computation offloading, IEEE Commun. Surv. Tutor. 19 (3) (2017) 1628–1656.

[2] Y. Mao, C. You, J. Zhang, K. Huang, K.B. Letaief, Mobile edge computing: Survey
and research outlook, 2017, arXiv preprint arXiv:1701.01090.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: Vision and challenges,
IEEE Internet Things J. 3 (5) (2016) 637–646.

[4] M. Xiao, J. Wu, L. Huang, R. Cheng, Y. Wang, Online task assignment for
crowdsensing in predictable mobile social networks, IEEE Trans. Mobile Comput.
16 (8) (2017) 2306–2320.

[5] Y. Li, W. Gao, MUVR: Supporting multi-user mobile virtual reality with resource
constrained edge cloud, in: IEEE/ACM Symposium on Edge Computing, IEEE,
2018, pp. 1–16.

[6] Z. Lai, Y.C. Hu, Y. Cui, L. Sun, N. Dai, H.-S. Lee, Furion: Engineering high-quality
immersive virtual reality on today’s mobile devices, IEEE Trans. Mobile Comput.
(2019).

[7] Y. Geng, Y. Yang, G. Cao, Energy-efficient computation offloading for
multicore-based mobile devices, in: IEEE INFOCOM, IEEE, 2018, pp. 46–54.

[8] M.-H. Chen, B. Liang, M. Dong, Joint offloading and resource allocation for
computation and communication in mobile cloud with computing access point,
in: IEEE INFOCOM, IEEE, 2017, pp. 1–9.

[9] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, M.J. Freedman,
Live video analytics at scale with approximation and delay-tolerance, in: 14th
USENIX NSDI, USENIX, 2017, pp. 377–392.

[10] J. Xu, L. Chen, P. Zhou, Joint service caching and task offloading for mobile edge
computing in dense networks, in: IEEE INFOCOM, IEEE, 2018, pp. 207–215.

[11] X. Chen, L. Pu, L. Gao, W. Wu, D. Wu, Exploiting massive D2D collaboration for
energy-efficient mobile edge computing, IEEE Trans. Wireless Commun. 24 (4)
(2017) 64–71.

[12] D. Wu, Q. Liu, H. Wang, D. Wu, R. Wang, Socially aware energy-efficient mobile
edge collaboration for video distribution, IEEE Trans. Multimedia 19 (10) (2017)
2197–2209.

[13] H. Guo, J. Liu, Collaborative computation offloading for multiaccess edge
computing over fiberwireless networks, IEEE Trans. Veh. Technol. 67 (5) (2018)
4514–4526, http://dx.doi.org/10.1109/TVT.2018.2790421.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A.
Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, et al., Human-level control
through deep reinforcement learning, Nature 518 (7540) (2015) 529.

[15] V. Mnih, A.P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, K.
Kavukcuoglu, Asynchronous methods for deep reinforcement learning, in: ACM
ICML, ACM, 2016, pp. 1928–1937.

[16] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, D. Meger, Deep
reinforcement learning that matters, in: Thirty-Second AAAI, 2018.

[17] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, F. Bai, Hermes: Latency optimal
task assignment for resource-constrained mobile computing, IEEE Trans. Mobile
Comput. 16 (11) (2017) 3056–3069.

[18] M.-H. Chen, B. Liang, M. Dong, Joint offloading decision and resource allocation
for multi-user multi-task mobile cloud, in: IEEE ICC, IEEE, 2016, pp. 1–6.

[19] K. Winstein, A. Sivaraman, H. Balakrishnan, Stochastic forecasts achieve high
throughput and low delay over cellular networks, in: 10th USENIX NSDI,
USENIX, 2013, pp. 459–471.

[20] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens, H.
Balakrishnan, Mahimahi: Accurate record-and-replay for HTTP, in: 2015 USENIX
ATC, USENIX, 2015, pp. 417–429.

[21] R.S. Sutton, D.A. McAllester, S.P. Singh, Y. Mansour, Policy gradient methods
for reinforcement learning with function approximation, in: NIPS, 2000, pp.
1057–1063.

[22] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press,
2018.

[23] Shanghai taxi trajectory traces, http://wirelesslab.sjtu.edu.cn/taxitracedata.html.
[24] W. Zhang, Z. Zhang, H.-C. Chao, Cooperative fog computing for dealing with

big data in the internet of vehicles: Architecture and hierarchical resource
management, IEEE Commun. Mag. 55 (12) (2017) 60–67.

[25] W. Zhang, Z. Zhang, S. Zeadally, H.-C. Chao, Efficient task scheduling with
stochastic delay cost in mobile edge computing, IEEE Commun. Lett. 23 (1)
(2018) 4–7.

[26] S. Bi, Y.J. Zhang, Computation rate maximization for wireless powered mobile-
edge computing with binary computation offloading, IEEE Trans. Wireless
Commun. 17 (6) (2018) 4177–4190.

[27] J. Du, L. Zhao, J. Feng, X. Chu, Computation offloading and resource allocation
in mixed fog/cloud computing systems with min-max fairness guarantee, IEEE
Trans. Commun. 66 (4) (2018) 1594–1608.

[28] Y. Jin, L. Jiao, Z. Qian, S. Zhang, N. Chen, S. Lu, X. Wang, Provisioning
edge inference as a service via online learning, in: 2020 17th Annual IEEE
International Conference on Sensing, Communication, and Networking (SECON),
IEEE, 2020, pp. 1–9.

[29] N.C. Luong, D.T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, D.I. Kim,
Applications of deep reinforcement learning in communications and networking:
A survey, IEEE Commun. Surv. Tutor. (2019).
10
[30] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, W. Zhuang, Learning-based
computation offloading for IoT devices with energy harvesting, IEEE Trans. Veh.
Technol. 68 (2) (2019) 1930–1941.

[31] M.G.R. Alam, M.M. Hassan, M.Z. Uddin, A. Almogren, G. Fortino, Autonomic
computation offloading in mobile edge for IoT applications, Future Gener.
Comput. Syst. 90 (2019) 149–157.

[32] J. Li, H. Gao, T. Lv, Y. Lu, Deep reinforcement learning based computation
offloading and resource allocation for MEC, in: IEEE WCNC, IEEE, 2018, pp.
1–6.

[33] Y. He, F.R. Yu, N. Zhao, V.C. Leung, H. Yin, Software-defined networks
with mobile edge computing and caching for smart cities: A big data deep
reinforcement learning approach, IEEE Commun. Mag. 55 (12) (2017) 31–37.

[34] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, M. Bennis, Optimized computation
offloading performance in virtual edge computing systems via deep reinforcement
learning, IEEE Internet Things J. 6 (3) (2019) 4005–4018.

[35] C. Zhang, Z. Liu, B. Gu, K. Yamori, Y. Tanaka, A deep reinforcement learning
based approach for cost-and energy-aware multi-flow mobile data offloading,
IEEE Trans. Commun. E101.B (7) (2018) 1625–1634.

[36] H. Mao, R. Netravali, M. Alizadeh, Neural adaptive video streaming with
pensieve, in: ACM SIGCOMM, ACM, 2017, pp. 197–210.

[37] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C.H. Liu, D. Yang, Experience-driven
networking: A deep reinforcement learning based approach, in: IEEE INFOCOM,
IEEE, 2018, pp. 1871–1879.

[38] H. Zhang, W. Li, S. Gao, X. Wang, B. Ye, ReLeS: A neural adaptive multipath
scheduler based on deep reinforcement learning, in: IEEE INFOCOM, IEEE, 2019,
pp. 1648–1656.

Ning Chen is currently working toward the Ph.D. degree
in the Department of Computer Science and Technology,
Nanjing University, under the supervision of Prof. Sheng
Zhang. His research interests including edge computing,
deep reinforcement learning, and video streaming. To date,
he has published several papers, including those appeared
in ICPADS and SECON.

Sheng Zhang is an associate professor in the Department
of Computer Science and Technology, Nanjing University.
He is also a member of the State Key Lab. for Novel
Software Technology. He received the BS and PhD degrees
from Nanjing University in 2008 and 2014, respectively.
His research interests include cloud computing and edge
computing. To date, he has published more than 80 papers,
including those appeared in TMC, TON, TPDS, TC, MobiHoc,
ICDCS, INFOCOM, SECON, IWQoS, and ICPP. He received
the Best Paper Award of IEEE ICCCN 2020 and the Best
Paper Runner-Up Award of IEEE MASS 2012. He is the
recipient of the 2015 ACM China Doctoral Dissertation
Nomination Award. He is a member of the IEEE and a senior
member of the CCF.

Jie Wu is the chair and a Laura H. Carnell professor in the
Department of Computer and Information Sciences at Tem-
ple University. He is also an Intellectual Ventures endowed
visiting chair professor at the National Laboratory for Infor-
mation Science and Technology, Tsinghua University. Prior
to joining Temple University, he was a program director at
the National Science Foundation and was a Distinguished
Professor at Florida Atlantic University. His current research
interests include mobile computing and wireless networks,
routing protocols, cloud and green computing, network
trust and security, and social network applications. Dr. Wu
regularly publishes in scholarly journals, conference pro-
ceedings, and books. He serves on several editorial boards,
including IEEE Transactions on Service Computing and the
Journal of Parallel and Distributed Computing. Dr. Wu was
general co-chair/chair for IEEE MASS 2006, IEEE IPDPS
2008, and IEEE ICDCS 2013, as well as program co-chair
for IEEE INFOCOM 2011 and CCF CNCC 2013. Currently,
he is serving as general chair for ACM MobiHoc 2014. He
was an IEEE Computer Society Distinguished Visitor, ACM
Distinguished Speaker, and chair for the IEEE Technical
Committee on Distributed Processing (TCDP). Dr. Wu is a
CCF Distinguished Speaker and a Fellow of the IEEE. He is
the recipient of the 2011 China Computer Federation (CCF)
Overseas Outstanding Achievement Award.

http://refhub.elsevier.com/S1389-1286(20)31270-6/sb1
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb1
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb1
http://arxiv.org/abs/1701.01090
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb3
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb3
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb3
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb4
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb4
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb4
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb4
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb4
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb5
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb5
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb5
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb5
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb5
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb6
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb6
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb6
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb6
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb6
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb7
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb7
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb7
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb8
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb8
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb8
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb8
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb8
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb9
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb9
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb9
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb9
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb9
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb10
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb10
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb10
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb11
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb11
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb11
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb11
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb11
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb12
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb12
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb12
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb12
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb12
http://dx.doi.org/10.1109/TVT.2018.2790421
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb14
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb14
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb14
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb14
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb14
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb15
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb15
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb15
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb15
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb15
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb17
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb17
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb17
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb17
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb17
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb18
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb18
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb18
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb19
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb19
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb19
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb19
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb19
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb20
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb20
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb20
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb20
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb20
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb22
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb22
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb22
http://wirelesslab.sjtu.edu.cn/taxitracedata.html
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb24
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb24
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb24
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb24
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb24
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb25
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb25
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb25
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb25
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb25
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb26
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb26
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb26
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb26
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb26
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb27
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb27
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb27
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb27
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb27
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb28
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb28
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb28
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb28
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb28
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb28
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb28
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb29
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb29
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb29
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb29
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb29
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb30
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb30
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb30
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb30
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb30
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb31
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb31
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb31
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb31
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb31
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb32
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb32
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb32
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb32
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb32
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb33
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb33
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb33
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb33
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb33
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb34
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb34
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb34
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb34
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb34
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb35
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb35
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb35
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb35
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb35
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb36
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb36
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb36
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb37
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb37
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb37
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb37
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb37
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb38
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb38
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb38
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb38
http://refhub.elsevier.com/S1389-1286(20)31270-6/sb38

Computer Networks 184 (2021) 107655N. Chen et al.
Zhuzhong Qian is an associate professor at the Department
of Computer Science and Technology, Nanjing University.
He is also a member of the State Key Laboratory for
Novel Software Technology. He received his Ph.D. Degree
in computer science in 2007. Currently, his research in-
terests include cloud computing, distributed systems, and
pervasive computing. He is the chief member of several
national research projects on cloud computing and pervasive
computing. He has published more than 30 research papers
in related fields. He is a member of CCF and IEEE.
11
Sanglu Lu received her Ph.D. degree in computer sci-
ence from Nanjing University in 1997. She is currently
a professor in the Department of Computer Science and
Technology and the State Key Laboratory for Novel Soft-
ware Technology. Her research interests include distributed
computing, wireless networks, and pervasive computing.
She has published over 80 papers in referred journals and
conferences in the above areas. She is a member of CCF and
IEEE.

	Learning scheduling bursty requests in Mobile Edge Computing using DeepLoad
	Introduction
	Motivation
	System model and problem formulation
	System model
	Request model
	Edge server model

	Problem formulation

	DRL-based algorithm design
	Basic learning mechanism
	Algorithm design
	State space
	Policy
	Reward
	DRL model training methodology
	Policy gradient training
	Parallel training

	Performance evaluation
	BRS simulator
	Training testbed and benchmark
	Effectiveness and impact factor of DeepLoad
	Effectiveness of DeepLoad
	Impact factor

	Related work
	Scheduling compute-intensive requests with cooperative methods
	DRL-based application

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

