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Abstract—Instead of relying on remote clouds, today’s Augmented Reality (AR) applications usually send videos to nearby edge servers for
analysis (such as objection detection) so as to optimize the user’s quality of experience (QoE), which is often determined by not only detection
latency but also detection accuracy, playback fluency, etc. Therefore, many studies have been conducted to help adaptively choose best
video configuration, e.g., resolution and frame per second (fps), based on network bandwidth to further improve QoE. However, we notice that
the video content itself has significant impacts on the configuration selection, e.g., the videos with high-speed objects must be encoded with a
high fps to meet the user’s fluency requirement. In this article, we aim to adaptively select configurations that match the time-varying network
condition as well as the video content. We design Cuttlefish, a system that generates video configuration decisions using reinforcement
learning (RL). Cuttlefish trains a neural network model that picks a configuration for the next encoding slot based on observations collected by
AR devices. Cuttlefish does not rely on any pre-programmed models or specific assumptions on the environments. Instead, it learns to make
configuration decisions solely through observations of the resulting performance of historical decisions. Cuttlefish automatically learns the
adaptive configuration policy for diverse AR video streams and obtains a gratifying QoE. We compared Cuttlefish to several state-of-the-art

bandwidth-based and velocity-based methods using trace-driven and real world experiments. The results show that Cuttlefish achieves a

18.4-25.8 percent higher QoE than the others.

Index Terms—Augmented reality, reinforcement learning, configuration adaption

1 INTRODUCTION

NTELLIGENT mobile devices supporting Augmented Reality

(AR) become sought after by the masses with diverse
requirements. AR is defined as an approach to “augment”
the real-world with virtual objects. According to Azuma
et al. [1], the AR system has the following attributes: to com-
bine real and virtual objects in a real environment; to geo-
metrically align virtual objects and real ones in the real
world; to run interactively and in real time. AR technology
has been applied to a wide range of fields: tourism, enter-
tainments, marketing, surgery, logistics, manufacturing,
maintenance and others [2], [3]. Reports foretasted that
99 million AR/VR devices will be shipped in 2021 [4], and
that the market will reach 108 billion dollars [5] by then.
Existing mobile AR systems, such as ARKit, Microsoft Holo-
Lens [6] and the announced Magic Leap One [7], facilitate
the interaction between humans and the virtual world.

Benefited from the emerged Mobile Edge Computing
(MEQ) [8], [9], [10], the compute-intensive object detection
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in AR applications is pushed from remote cloud to edge
servers. The AR device uploads the encoded video to the
edge server for detecting and rendering, then downloads
the well handled video. The AR system on the edge lever-
ages the state-of-the-art detecting algorithms such as YOLO
[11], [12], [13] that adopts one state detector strategy that
views the object detection as a regression problem and
learns the boundary coordinates as well as the correspond-
ing class probability.

However, current AR systems lack effective mechanisms
to achieve the adaptive configuration to bridge the perfor-
mance gap resulting from (1) the fluctuation of network
throughout over time; (2) the conflicting Quality of Experi-
ence (QoE) requirements (i.e., accuracy and latency of
detecting, and fluency of video play); and (3) the time-
shifted moving velocities of target objects. Specifically, we
take the fps and resolution selection as an example to elabo-
rate the impacts of AR video configuration on user QoE. We
divide the total time of interest into multiple slots of equal
length, and define the fps as the number of frames per slot.
Images with higher resolutions, divided into multiple grid
cells in YOLOV3, are likely to enhance the detecting accu-
racy, but inevitably cause longer transmission delays when
fixing the fps. Similarly, AR videos encoded with a high fps
may lead to a better fluency without any stutters, but they
lead to larger uploading and detecting delays. When the
network bandwidth changes over time, encoding the AR
videos with an exorbitant configuration may lead to a dete-
riorating QoE and degraded network status, but assigning a
poor configuration abates the network utilization as well as
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QoE. Apart from the unpredictable network bandwidth, the
moving trends of objects in term of moving velocity and
direction are also unknown. The video with high-speed
objects usually needs a high fps to guarantee the fluency,
but a much lower fps is enough if the objects are almost
static. Hence, the video configuration should match the
time-varying network bandwidth and the moving velocities
of the objects in the videos. We will further describe these
challenges in Section 2.

In this paper, we pursue a black-box approach for adap-
tive configuration of AR video that embraces inference
while not relying on detailed analytical performance model-
ing. Encouraged by recent inspiring achievements of deep
reinforcement learning (DRL) [14], [15], [16] in the Alpha-go
game [17], video streaming [18], and job scheduling [19], we
propose and design the learning-based Cuttlefish,' an intel-
ligent encoder for adaptive video configuration selection,
without using any pre-programmed models or specific
assumptions.

Cuttlefish starts with no knowledge and gradually learns
to make better configuration decisions through reinforce-
ment, in the form of reward signals that reflect user’s QoE
from past decisions. Cuttlefish depicts its policy as a neural
network that maps “raw” observations (e.g., estimated
bandwidth, captured velocity and historical configurations)
to the configuration decision for the next slot. The neural
network incorporates a rich diversity of observations into
the configuration policy in a scalable and expressive way.
Cuttlefish aims to maximize the accumulative discounted
reward rather than a temporary maximum reward, since a
current well-performing configuration may not benefit
future configurations. Particularly, Cuttlefish trains its pol-
icy network using the state-of-the-art asynchronous advan-
tage actor-critic network model (A3C) [15]. After training
over numerous episodes, we can adopt the Cuttlefish to
make efficient video configuration decisions.

Our major contributions are summarized as follows:

e We identify several subtle factors to adaptive config-
uration selection in edge-based video analysis appli-
cations. First, time-varying bandwidth constrains the
encoded fps and resolution, and time-shifted moving
velocity limits the encoded fps. Besides, current
information may be instructive for future configura-
tion selection. Last but not the least, diverse person-
alized QoEs usually lead to a latency-accuracy-
fluency tradeoff. We combine these factors to make
configuration decisions, which has not been revealed
in the existing literature.

e We present Cuttlefish, an intelligent system that
learns an adaptive configuration policy from past
traces. We train the Cuttlefish with the A3C algo-
rithm that takes the current observed state (esti-
mated bandwidth, captured speed of target objects,
et al.) as input, and outputs the probability distribu-
tion of all configurations, from which the video
encoder selects an optimal configuration that maxi-
mizes the accumulative discounted reward.

1. Cuttlefish, sometimes referred to as “chameleons of the sea”, can
rapidly alter their skin color to camouflage themselves.
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Fig. 1. Bandwidth fluctuation over time. (a) The uplink and downlink
bandwidth. (b) The Y-axis denotes the fraction of slots, in which the
bandwidth is within [80%, 120%] of the average bandwidth of the past 1,
3 or 5 slots.

e Weimplemented a prototype of Cuttlefish. We simu-
late the bandwidth over a large corpus of network
traces, and deploy YOLOV3 in the servers configured
with RTX2080 Ti GPUs. We compare Cuttlefish to
several state-of-the-art algorithms using diverse types
of AR videos, and Cuttlefish rivals or outperforms
these algorithms by improving the average QoE by
18.4-25.8 percent.

2 OBSERVATIONS AND CHALLENGES

In this section, we expound some vital observations that
motivate us to propose Cuttlefish.

2.1 Latency-Accuracy-Fluency Tradeoff

The AR devices upload real-time video stream to edge
cloud for detecting and rendering, in which detecting and
uploading processes occupy the majority of the total
latency. Generally, the detecting accuracy and video play
fluency are positively correlated with the encoded resolu-
tion and fps. Users embrace accurate and fluent well-crafted
AR videos in real time, however, high detecting accuracy, high
perceived fluency and low completion delay are difficult to meet
simultaneously. A video stream encoded with a higher reso-
lution can get a gratifying accuracy, but assigning a resolu-
tion that exceeds the available bandwidth may lead to an
unbearable uploading delay when facing a degraded net-
work. Similarly, a video with a higher fps gains desired flu-
ency without stutters, but may be followed with an extra
latency due to detecting and uploading more frames.
Hence, a well-balanced QoE is urgently-needed to mitigate
this tradeoff.

2.2 Variability in Network Bandwidth
Many AR applications are initiated from mobile devices
over cellular networks like LTE, which may experience fre-
quent bandwidth fluctuation [20]. To cater to the variable
bandwidth, the encoded resolution and fps should be
selected adaptively. To illustrate the variability of band-
width, we depict two ATT-LTE network traces from the
Mahimahi [21] project as Fig. 1 shows.

Across the upload and download traces, we made the
following observations:

e DPeriods of extreme low/high throughout are uncom-
mon: only 14.5 percent of the time, the upload
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(a) Safe driving (b) Virtual

Minions stands
next to the boy

Fig. 2. AR video with diverse velocities. (a) Detecting the moving
vehicles and pedestrians. (b) Rendering a virtual Minions in a nearly
static AR video.

bandwidth is 0 or larger than 10 Mbps, and 14.9 percent
for the download bandwidth;

e Thebandwidth of the next slot is closely related to the
average values of the past several slots: as Fig. 1b
shows, for uploading capacity, 76.3 percent slots own
less than 20 percent bandwidth variation compared
to the previous one slot, and it reaches 89.2 percent
when referring to the past five slots;

e The download capacity shares the similar pattern
with the upload capacity.

These observations suggest that, the bandwidth fluctuates
in a specific range (e.g., [0,28] in Fig. 1) during the whole time
scale, but varies less (e.g., [0,5]) in a smaller interval (e.g.,
from 400 to 410). These observations provide a feasible
approach to estimate the bandwidth without future network
information, and then guides the resolution selection.

2.3 Time-Shifted Moving Velocity

In real AR scenarios, target objects may not always move
fast or keep still as Fig. 2 shows. Fig. 2a depicts the detection
of moving vehicles in a dynamic traffic video for pedestrian
alert. Apparently, a large encoded fps should be adopted to
meet the fluency gap resulting from the dramatic location
changes of vehicles and pedestrians over time, but it causes
a remarkable rise in both the uploading and detecting laten-
cies. While in Fig. 2b, we render a virtual Minions that
stands next to the boy in a relatively static video. In such a
scenario, a smaller fps is enough to pledge the fluency.
Therefore, not only the bandwidth but also the video con-
tent should be taken into consideration when we need to
adaptively configure the video for a better QoE.

2.4 Challenges

Intuitively, the video encoding can be viewed as a sequen-
tial decision-making process. We select one of the best con-
figurations for the AR video encoder at each time slot. DRL
has been widely used for sequential decision-making in an
unknown environment, where an agent observes the cur-
rent state from the environment, selects an action based on
the current policy and updates the policy with the feedback
(i.e., reward from the environment). Generally, the policy is
represented as a neural network trained through numerous
trial-and-error interactions with the environment to maxi-
mize cumulative reward over time. It seems that we have a
practical solution to realize adaptive configuration based on
the above three observations. However, it is nontrivial to

P\
O

Neural (Policy)  Action (Configuration)
Network Distribution
Synthetic Traces £

QoE metrics (accuracy-
latency-fluency)

Reward

Fig. 3. Offline training. DRL agent pretrains its policy network with past
traces collected from interactions with the environment.

use DRL in our problem, as indicated by the following
knotty challenges:

e The state, action and reward in DRL are sophisti-
cated. The essence of state, accurate bandwidth and
velocity, are difficult to obtain. How to model the
estimated real-time bandwidth and capture the mov-
ing velocity are unsolved. We try to mitigate latency-
accuracy-fluency tradeoff and integrate them into
the reward. The reward not only represents the
user’s real experience for the selected configuration,
but also significantly affects the final performance of
Cuttlefish. However, the well-crafted reward func-
tion is not easy to design.

e Training samples are not readily available. It's imprac-
tical to obtain the training data by trial and error in
real AR scenarios. How to faithfully model video
stream with live AR video player is never trivial.

In the following section, we strive to solve the above

challenges and present the design details of Cuttlefish.

3 SYSTEM ARCHITECTURE OF CUTTLEFISH

We consider a real-time Augment Reality application with
personalized Quality of Experience. The encoded video
stream is uploaded to the edge cloud for the object detecting
and rendering process, and then sent back for providing the
fascinating AR stream for mobile users. To overcome the
challenges above, we propose Cuttlefish, a novel system
that enables us to adaptively select configuration to achieve
a better tradeoff among latency, accuracy and fluency. Cut-
tlefish leverages a highly representative DRL model rather
than a random strategy to choose a valuable configuration.
The offline training and online object detecting make up the
two fundamental components of Cuttlefish, which is illus-
trated in Figs. 3 and 4, respectively.

Offline Training. Pure online learning of the policy net-
work from scratch inevitably results in poor policies in the
beginning, namely cold start, as DRL typically requires a lot
of trials and errors in order to converge to an ideal policy.
Thus, the offline training is indispensable to generate a
well-designed model to meet the real-time detecting. To
overcome the cold start, we collect some expert data to train
the policy network through supervised learning. Hence, it
can reach better initial parameters compared to the random
schemes. As Fig. 3 illustrates, the DRL agent takes the cur-
rent state observed from the environment including band-
width, previous frames, moving velocity and previous
configurations as inputs, and then generates configuration
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Fig. 4. Online object detecting. Cuttlefish makes adaptive configuration
decisions for the real time AR video based on its observed states.

decision. The agent is able to obtain the instant reward, and
effectively expand the available trace set for DRL training.
Based on the SGD method and several advanced techniques
such as the Actor-Critic network and exploration enhance-
ment, the network weights are finally well trained. Note
that the DRL model will periodically update its parameters
to adapt to the changing environment.

Online Object Detecting. Since the DRL model has been
well-trained, we apply them to make configuration deci-
sions for live AR video streams. As Fig. 4 shows, before the
AR device encodes the video of the next time slot, it first col-
lects the current state (i.e., estimated bandwidth, captured
velocity et al) and extracts the past several configurations.
Then, it takes this state as the input of the Actor-Critic net-
work, and outputs the probability distribution of all
optional configurations, based on which the AR devices
make configuration decisions. Hence, the AR devices
encode the video with the selected configuration, upload
the AR video to the edge cloud for detecting and rendering,
and download the results. During the realtime interaction,
Cuttlefish integrates the state, action, instant reward and
the next observed state into a quadruple that can be viewed
as a newly collected sample, and retrains Cuttlefish’s policy
periodically to continuously improve the selected configu-
ration over time. In the following section, we show the
detailed design.

4 DESIGN DETAILS OF CUTTLEFISH

In this section, we first illustrate the basic learning mechanism,
and present the formal definition of our DRL framework.
Then, we elaborate on the detailed training methodology.

4.1 Basic Learning Mechanism

DRL is committed to learning an effective policy for the cur-
rent state from the historical experiences. As depicted in
Fig. 3, the RL-agent interacts with the environment, where
RL-agent is the brain for making decision, and the environ-
ment is a highly abstract that integrates the surrounding
information. The RL-agent can observe a small part of the
environment, which forms the state. At each time interval ¢,
the RL-agent observes a state s, and chooses an action a;
based on a specific policy 7. When the action is done, the
agent will receive an instant reward 7; and transit to the
next state s;; ;. Through constant interactions with the envi-
ronment until done, the RL-agent is expected to obtain a
high accumulative reward.

State §,

Policy (Actor) Network

Fig. 5. The neural network architecture of Cuttlefish.

4.2 DRL Framework

We propose the model-free DRL-based Cuttlefish to adap-
tively generate configurations without any knowledge from
the future environment and the state transition probability.
The detailed designs and principles are shown in Fig. 5.

4.2.1 State Space

The state is viewed as the observation of a RL-agent (i.e., a
MAR device or encoder in making configuration decisions)
from the environment. Through continuously learning from
historical experience, the RL-agent aims to obtain the compre-
hensive state that approaches the perspective of the God (i.e.,
with future and global knowledge). Thus, an exhaustive state
is critical to the decision-making efficiency. We take four key
elements into consideration, including the followings:

t> Historical configuration decisions ( fps;, res;). We divide
the total time 7 into multiple time slots of equal length. In each
slot, we assume the resolution and fps, denoted by res; and
fps; respectively, are constant. AR video streams do not have
subversive changes in two consecutive time slots, so that the
past decisions may help in selecting the configuration for the
next slot. The number of referenced past configurations used
in Cuttlefish, denoted by %k shown in Fig. 5, depends on the
video contents. For example, if the video is a highly dynamic
racing game, one past configuration is enough, while more
past configurations may be better in a slightly changeable AR
video stream. In practice, choosing an optimal & is not easy,
since even a static camera can generate both slightly change-
able videos (e.g., midnight) and highly dynamic ones (e.g.,
rush hours). This is left as our future work, and we believe
incorporating it into Cuttlefish can further elevate Cuttlefish.
> Estimated bandwidth B;;l The encoder struggles to
pick the resolution and fps that perfectly match the avail-
able bandwidth, yet lacks the access to gain the future band-
width. As previously stated, the bandwidth varies around
an specific value during solt ¢, and the more valuable refer-
ences of past bandwidths it adopts, the more accurate esti-
mation it can get. Thus, we calculate the estimated
bandwidth B! of slot ¢ + 1 as the weighted average band-

est

width of past  slots, i.e.,

BV = Y B, )
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where w; < w;ifi < j,and ) w; = 1.

> Average velocity v;. As we know, AR video stream
with target objects of high moving velocities is supposed to
be encoded with a higher fps. Similarly, videos with nearly
still objects correspond to a lower fps. Assume that the tar-
get objects set is Z = {21, 23, ..., 2, }, and the last configura-
tion is (fps;, res;). The encoded video stream is uploaded to
the edge cloud for object detecting with the YOLOV3 algo-
rithm, which directly predicts the position of target objects,
namely Bounding Box Prediction. For f < fps, and i € Z,
su})pqse that the Bounding Box Prediction set is
(z!,y! ,w!, h!,¢l), which consists of center coordinates of X
and Y (z/,y/), height and width (w/,h!), and prediction
class ¢/. Considering the moving trends of target objects are
not fixed or regular, we adopt Manhattan distance [22] rather
than euclidean distance to measure the distance that it moves
in unit time slot. Thus we define the velocity v; as the aver-
age accumulated distance of all objects moved from the cur-
rent frame to the next frame during slot t, i.e.,

1 o
v = fo — ! ‘ +
Z 2

i€Z 2<j<fpst

v-v). @

where Z is the target objects set. Note that some object may
disappear at the end of a slot; in this case, we assume its
location in the last frame of that slot is in the farthest corner
among all four corners from its location in the first frame of
the same slot.

> Feature map of the latest frame. In a convolution neu-
ral network, we’d like to use a network to simulate the char-
acteristics of the visual pathway. Several unseen features,
such as the shape edges and color shades, are favorable to
decision-making in AR video configuration. Diverse filters
are adopted to mine potential knowledge from different
perspectives. The detailed design of tuned filters for convo-
lution and pooling are provided in our implementation and
evaluation.

To sum up, we combine the historical configuration deci-
sions, estimated bandwidth of the next slot, and the average
velocity of all objects in the past slot into the state space.

4.2.2 Action Space

For a newly received state s, the DRL-agent selects an action
a based on the policy 7y(s, a), which is defined as the proba-
bility distribution over the action space, and then get an
instant reward. The policy my(s, a) is the output of policy net-
work, whose parameter is set to 6. To improve user’s QoE,
we aim to make an efficient decision on video configuration.
Naturally, we consider two key factors that affect the detect-
ing performance, i.e., the number of frames per slot fps, and
resolution res; during slot t. We couple these two elements
to form the action space, i.e., a; = (fps, res;).

4.2.3 Reward

The DRL agent is likely to receive an instant reward r, when
applying «a, to state s,. In practical AR applications, mobile
users pursuit high detecting accuracy as well as lower
latency and fine fluency, thus we should consider these
three metrics in the reward. Suppose that a; = (fps;, res;)
during slot ¢.

2 3 B F PR e BT
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Fig. 6. Accuracy and fluency. (a) Impact of resolution on accuracy under
varying é. (b) Impact of fps on perceived fluency under diverse velocities.

>> Latency. As mentioned before, the latency includes
uploading delay d}, detecting delay db, rendering delay d
and downloading delay d), where d} and d) depend solely
upon the available bandwidth, and db, df are up to the com-
puting power of edge servers. We make a normalization
and denote the total latency d; of handling the frames at slot
t by
dt:ﬁ’z‘”d§+c§K+dg+dg’ @
f=1 t f DSt

where, df is the latency of a single frame with the most
expensive resolution (e.g., 1080P in our experiment) at slot ¢
and d; € [0,1]. In practice, we calculate df as the average
latency of each frame using the most expensive resolution.

>> Detecting accuracy. We adopt F1 score, a harmonic
mean of precision and recall, to denote the accuracy. We
identify the true positives in the F1 score through a label-
based method, which checks if the bounding box has the
same label and adequate spatial overlap with the ground
truth box [23]. For a specific configuration, we compute
accuracy of a single frame by comparing the detected
objects with the objects detected by the most expensive con-
figuration. For the frames encoded with configuration
(fpsi, resy) during slot ¢, the F1 score for frame i is calculated
as F'1, = 5;/57, where S; is the area of the bounding box in
the ith frame with resolution res;, and S,f’ is the area of the
ground truth box in the ith frame with the most expensive
resolution. We define the detecting accuracy ¢; at slot ¢ as
the fraction of frames whose F1 score > §, e.g.,

o {filF1l; > 68,1 <i< fps;}
1 — .

4
fpst @

As Fig. 6a shows, we fix fps, and set diverse § to see the
impact of resolution on accuracy. Through numerous trials,
we demonstrate that the accuracy and resolution are posi-
tively correlated, which is consistent with our observation.
Besides, we find that a much smaller or bigger § is not likely
to obtain a more significant accuracy variation under
diverse resolutions. Hence, we select an empirical § (e.g., 0.7
in Fig. 6a) to reflect this trend in our evaluation.

> Fluency. User’s perceived fluency is defined as the
smooth level of video play. Without loss of generality, con-
figured with a higher fps, the video could gain a better flu-
ency, yet the improvement of fluency will not be significant
when the frame rate reaches a certain threshold. As
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described in Section 2, we observed that the demanded fps
towards AR videos with diverse velocities to meet the same
fluency is different. For instance in Fig. 2, videos similar to
Fig. 2a are proposed to be encoded with a higher fps to
reach the same perceived fluency for videos like Fig. 2b.
Based on the above observations, we give the formal defini-
tion of user’s perceived fluency v, i.e.,

’UWN],T
w, = ——logy, (fpsi), 5)
Ut

where m is the optional maximum fps and v,,,,, is the maxi-
mum velocity (i.e., the diagonal distance of the frame), v; €
[0,Vas], and 0 < fps; < m. As illustrated in Fig. 6b, to ver-
ify the correctness of Eq. (5) and further explain the impact
of fps and moving velocity on user’s perceived fluency, we
collect two main types of videos from YouTube, including
videos with low-speed objects (e.g., pedestrians), and vid-
eos with high-speed objects (e.g., cars). Then, we calculate
the average moving velocities and the corresponding flu-
ency of these two types of objects in every second based on
Eq. (5). Every second on the top half corresponds to a fps on
the bottom half. The empirical results also agree with the
point we made earlier.

As users may have different preferences on which of the
three components is more important, we define the reward
r, of video configuration at slot ¢ by a weighted sum of the
aforementioned components, e.g.,

re = —ay(di — d) + aa(c — ) + a3(ur — ), (6)

where o, oy and o3 are the weight factors to balance the
preference to delay, accuracy and fluency, and ), o; = 1.
This definition of reward is quite general as it allows us to
model varying user preferences on different contributing
factors. In practice, to mitigate the diverse fluctuations of
these metrics, we set d, ¢ and @ to the average values of
delay, detecting accuracy and perceived fluency respec-
tively, all of which are measured by substantial empirical
video traces.

4.3 DRL Model Training Methodology

The configuration space is bounded, but the sophisticated
state space seems infinite, thus there are endless (s;,a;)
pairs. Instead of storing the value of each (s;, ;) pair in tab-
ular form, e.g., Q-table, we adopt the state-of-the-art A3C
algorithm, which uses a neural network [9] to represent a
policy n, and the adjustable parameter of the neural net-
work is referred to as the policy parameter 6. Therefore, we
can present the policy as m(a;|s;60) — [0, 1], indicating the
probability of taking action a; at state s;. The objective of
DRL is to find a best policy 7 mapping a state to an action
that maximizes the expected accumulative discounted
reward as J(0) =E [Z;SO‘T‘ ytrt} , where t, is the current time
and y € (0, 1] is a factor to discount the future reward.

4.3.1  Policy Gradient Training

The actor-critic network used by Cuttlefish is trained with
policy gradient method, whose key idea is to estimate the gra-
dient of the expected total reward by observing the trajecto-
ries of executions obtained by following the policy. We

highlight the key steps of the algorithm, focusing on the
intuition. The policy gradient of J(#) with respect to 6, to be
used for Policy Network update for slot ¢, can be calculated
as follows [24]:

Vo (0) = Ex, | Y VO log (ma(si, ar)) A™ (s, a1) |, )

teT

where A™ (s, a;) is the advantage function that indicates the
gap between the expected accumulative reward when we
deterministically select a; at state s; following my and the
expected reward for actions drawn from policy my. Indeed,
the advantage function reflects how much better a current
specific action is compared to the “average action” taken
based on the policy. Intuitively, we reinforce the actions
with positive advantage value A™(s,a), but degrade the
actions with negative advantage value A™ (s, a).

In particular, the RL-agent extracts a trajectory of config-
uration decisions and views the empirically computed
advantage A(s;, a;) as an unbiased estimated A™ (s;, ;). The
update rule of actor network parameter 6 follows the policy
gradient,

6 «— 9+aZV9 log ma(st, ar) A(se, ar), )
teT

where « is the learning rate. The marrow behind this update
law is summarized as follows: the gradient direction
Vo logmy(ss, ay) indicates how to change parameter 6 to
improve my(s;,a;) (i.e., the probability of action a, at state
s ). Eq. (8) goes a step along the gradient descent direction.
The specific step size is up to the advantage value
A7 (s;,ar). Hence, the goal of each update is to reinforce
actions that empirically have better feedbacks. To compute
the advantage value A(s;, ;) for a given sample, we need to
get the estimated value function v™(s), i.e., the total expected
reward starting at state s following the policy . As Fig. 5
shows, the role of critic network is to learn an estimated
v™ (s) from observed rewards. We update the critic network
parameters 6, based on the Temporal Difference [25] method,

0, —0,—0' 3 VotV 5100V (5,60, O
t

where V™(s;;0,) is the estimated v™(s;) that produced by
the critic network, and o' is the learning rate. To have a fur-
ther understanding, we take a specific experience
(st,at,rt,stﬂ)z as an example, we estimate the advantage
value A(s:,ar) as r: + yV™(s¢41;0,) — V™(s4;60,). Note that
the critic network does nothing to train the actor network
other than evaluate the policy of actor network. In actual
AR scenarios, only the actor network is involved in making
configuration decision.

To realize an adequate exploration for RL agent during
training to discover better policies, thereby reducing the
risk of falling into suboptimal, we add an entropy regulariza-
tion [15] term to encourage exploration. This practice is sig-
nificant to help the agent converge to a fine policy.
Correspondingly, we modify Eq. (8) to be

2. The RL-agent takes action a; for state s; in the beginning of slot ¢,
then obtains instant reward 7, and transits to next state s;. 1.
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Fig. 7. Parallel training of A3C. A3C adopts multi-thread technology to
train the actor-critic network. Each thread, which can be viewed as a RL-
agent, trains its own network independently, and interacts with the main
network through pull-push mechanism.

9<—9+“ZV9 logrd(ss, ar) A(se, ar) + BV H(rro(+|s1)), (10)
t

where f is entropy weight, which set to a large value and
decrease over time to allow Cuttlefish to have more oppor-
tunity on improving rewards, and H(-) is the policy entropy
to encourage exploration by pushing 6 in the direction with
higher entropy at each time slot.

4.3.2 Parallel Training

To further enhance exploration and speed up training. As
shown in Fig. 7, we use a parallel approach to obtain abun-
dant training samples quickly. We start n threads (.e.,
agents) at the same time, and adopt diverse environment
settings (e.g., diverse network traces and AR videos). Dif-
ferent agents are likely to experience different states and
transitions, thus avoiding the correlation. Specifically,
each agent continuously collects its samples (i.e., tuple
{st,a¢,74,841}), and uses the actor-critic algorithm to com-
pute a gradient and perform a gradient descent step as
shown in Egs. (9) and (10), independently. Then, each agent
pushes its actor parameters to the central agent, which inte-
grates the parameters, and generates a global actor network.
Finally, each agent pulls the global model from central
agent, and starts next training episode until the global actor
network is convergent. Since the actor-critic network has
been well trained, we can take a fast and accurate action
based on the action probability distribution for each encod-
ing slot.

5 IMPLEMENTATION AND EVALUATION

We have implemented Cuttlefish as an intelligent encoder
that achieves adaptive configuration for video analysis in
AR applications. We first describe the bandwidth simula-
tion in a trace-driven manner. Next, we present Cuttlefish’s
training settings on the neural network architecture. Finally,
we experimentally evaluate Cuttlefish with numerous real
live AR videos. Our results answer the following questions:

Question #1. How to verify the convergence of Cuttlefish
during training? We track Cuttlefish’s policy entropy and
accumulative reward across over 2,000 training episodes,
and find that the former (resp. later) metric gradually
decreases (resp. increases) and finally converges to a non-
zero value.

Question #2. How does Cuttlefish perform compared to
several carefully-tuned heuristics in term of QoE? We dis-
cover that Cuttlefish rivals or outperforms several state-of-
the-art schemes, with the average QoE improvements of
being 18.4-25.8 percent.

Question #3. Can Cuttlefish’s learning generalize to other
types of bandwidth traces (e.g., more volatile) or AR videos
(e.g., objects move faster)? We find that Cuttlefish is able to
maintain a good performance in the face of new network
conditions and new videos.

5.1 Trace-Driven Bandwidth and Video Collection
With the aid of local area networks (LANSs), the AR devices
upload live video to the edge cloud deployed at base sta-
tions (BS). However, given the privacy protection, it is
impractical to operate the real BSs. Hence, we would like to
simulate the LAN that faithfully matches the real scenario.
We establish a corpus of network traces by integrating sev-
eral public datasets or network emulation tool: a broadband
dataset provided by the FCC [26] and the tool Mahimahi
[21]. The FCC data set consists of over 1 million throughout
traces, each of which logs the average throughput over
2,100 seconds at a 5 second granularity. We pick 100 traces for
our corpus, each with a duration of 200 seconds, by con-
catenating randomly sampled traces from “Web browsing”
category in the February 2016 collection. The Mahimahi tool
generates traces that represent the time-varying capacity of
U.S. cellular networks as experienced by a mobile user. Each
trace gives a timestamp in milliseconds (from the beginning
of the trace) and records the maximum number of 1,500-byte
packets it transits at each millisecond. We reformat the
throughout trace to match the FCC dataset. Similarly, we gen-
erate 100 traces to our corpus, each of which is compatible to
the item of FCC traces. During training, unless otherwise
noted, we view a trace randomly picked from the corpus as
the link bandwidth.

The empirical training datasets of videos, sampled and
sifted from the popularized YouTube in an offline method,
have the version with the most expensive configuration
(i.e., 1080P and 30fps for Cuttlefish). To gain adequate and
representative samples, several typical videos, including
pedestrians and vehicles, are collected in a large scale across
10 hours, and shares the same length with the bandwidth
traces in our corpus. After completing the sampling, we
leverage OpenCV [27] to make some preprocessing for the
selected videos. We convert the origin video into multiple
versions, each of which owns a different resolution. Consid-
ering that we make a decision at each time slot, we divide
the AR video into multiple chunks of equal length, which is
the same as the time slot. Hence, these crafted samples can
be adopted to train Cuttlefish’s actor-critic network.

5.2 Training Setup

We employ YOLOV3 algorithm for detecting in an edge
server (PowerEdge R740, which is configured with NVIDIA
GeForce RTX 2080 Ti GPUs). The Actor-Critic networks of
Cuttlefish as Fig. 5 shows, implemented using libraries on
Pytorch [28] and trained with the A3C algorithm, share the
same parameters of the input layer and hidden layer, and
output the action distribution and the Q-value. The detailed
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TABLE 1
Actor-Critic Network Design of Cuttlefish

Types Actor network Critic network
Input layer 2x1D-CNN+VGG16+3 2x1D-CNN+VGG16+3
Hidden layer 256 x 256 x 256 256 x 256 x 256
Output layer |action_space| 1

design of the network architecture is listed in Table 1. We
make parallel training of Cuttlefish with multiple workers,
each of which gains traces of diverse videos, calculates gra-
dients locally and independently, then pushes the gradient
to the central work synchronously, and pulls the aggregated
global parameters. We adopt the Adam optimizer to perform
gradient descent, with a fixed learning rate of 0.0001, mini-
batch size of 32 samples per worker, reward discount factor
y=0.9, and entropy weight g=0.01. We first verify
Cuttlefish’s convergence. As illustrated in Fig. 8, a larger
policy entropy is set to encourage a deeper exploration in
the beginning. While with the increase of training episodes,
the policy entropy gradually tends to a smaller value, i.e., the
policy network is nearly convergent, and Cuttlefish lays
emphasis on utilization toward actions. Note that in the
time-varying scenario, to be compatible with the newly gen-
erated states, the entropy is not likely to be 0. Concurrent
with this increase has been a spiral rise in the accumulative
reward. In the initial episodes, as the result of the random
policy shows, Cuttlefish performs badly in terms of numeri-
cal size and stability. However, through a further explora-
tion, Cuttlefish gains a larger and more steady accumulative
reward that fluctuates around the maximum.

Without loss of generality, the available selection range
for fps; and res; are set to F'=(16,30) and R={480P, 720P,
900P, 1080P}, respectively. If only integers are adopted for
fps; and res;, the total numbers of action can be calculated
as |F|x|R|. The bounded action space can greatly lessen the
training time. Note that, Cuttlefish can be slightly modified
to other ranges of /' and R.

5.3 Techniques and Baselines

We utilize several techniques to improve Cuttlefish’s utility,
including: (1) We adopt sparse optical flow [29] to track the
detected objects in the first and last frame of the same slot,
considering that there may be multiple objects of the same
class; (2) We extract the feature map of the last frame in
each slot through the advanced VGG16 [30] directly, rather
than a retrained model; (3) We obtain numerous experien-
ces (8¢,at,7t,8t41) in an offline method, which accelerates
the training speed significantly. To further evaluate
Cuttlefish’s performance, we compare it to the following
four schemes:

e None-Adaptation. For each slot, the encoder ran-
domly selects a configuration (i.e., resolution and
fps) without consideration on the available band-
width or velocity.

e Bandwidth Based Adaptation [31]. For each observed
state s, the encoder first finds out all possible combina-
tion of fps and resolution that roughly match the esti-
mated bandwidth B!, i.e., { (res, fps)|resx fps~B.,}.
Then, for each configuration, we calculate its reward
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Fig. 8. Policy entropy and accumulative reward over the training
episodes.

using Eq. (6). We choose the optimal one with the maxi-
mum reward as the configuration.

e Velocity Based Adaptation. We first set the minimum
threshold that the fluency must be satisfied. Then,
given the v,,,, and v;, we can calculate the minimum
fpSmin to meet the threshold according to Eq. (2), i.e.,
the feasible options are {(res, fps)|fps > fpsmin}, and
we pick the configuration with the maximum reward.

e Velocity Bandwidth Joint Adaptation [32]. The tuned
decision is ought to conform to the estimated band-
width, and meets the fluency threshold. We use
{(res, fps)|resx fps~B.,, fps > fpsm,-n} to record
the set of possible configurations. Analogously, we
select the most valuable configuration.

To simplify the description in the analysis and drawing,

we refer to these baselines as NA, BBA, VBA, VBJA,
respectively.

5.4 Experimental Results and Analyses

Two typical types of live videos, collected by street fixed
cameras for monitoring high-speed cars and on-board
mobile cameras for capturing low-speed pedestrians,
respectively, are adopted as testing samples to compare
Cuttlefish to other baselines. For every type of video we set
200 episodes, each of which contains 200 slots (seconds),
i.e., a total of 40 thousand seconds.

In practice, the accumulative reward of a whole episode
is the most important metric to evaluate the performance of
the proposed model. We first analyze the accumulative
reward of Cuttlefish on the videos that mainly consist of
pedestrians. As Fig. 9a shows, BBA and VBA take either
bandwidth or velocity into consideration, and VBJA empha-
sizes the instant temporary reward. What’s more, to meet
the desired fluency, VBA may select a very high fps, which
increases the transmission delay, and then decreases the
accumulative reward. Hence, their accumulative rewards
are inferior to Cuttlefish. Cuttlefish gains a more steady per-
formance enhancement over 40 percent compared to other
baselines. We next test Cuttlefish using the car videos, the
results of which are shown in Fig. 9c. Compared to the
state-of-the-art heuristic VBJA, Cuttlefish still has a signifi-
cant improvement in the average accumulative reward,
which is 18.4 percent. The proposed Cuttlefish, taking net-
work and velocity into consideration, outperforms the
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ing types of videos (i.e., for capturing pedestrians and cars, respectively), whose experimental results are presented as (a)&(b) and (c)&(d),

respectively.

bandwidth-based BBA by roughly 25.8 percent. These
inspiring results indicate that Cuttlefish is also capable of
processing videos with high-speed targets. It is worth men-
tioning that Cuttlefish performs better on videos with
pedestrians than those with cars. The reason behind this
phenomenon is that the videos with high-speed targets lead
to a larger state space, which increases the training difficulty
and finally translates into the reward loss.

We are also interested in evaluating how these algo-
rithms perform with respect to latency, accuracy, and flu-
ency, respectively. For latency, we define NAR (short for
negative action rate) as the fraction of slots in which the
latency (including the uploading, detecting, rendering, and
downloading latencies) of a frame is larger than the length
of a time slot. For accuracy, the NAR is the fraction of slots
in which the accuracy is lower than the threshold (i.e., 0.7).
For fluency, the NAR is the fraction of slots in which the
perceived fluency is worse than the given value (i.e., 0.7). In
our experiments, we simulate the bandwidth with more
than 1000 traces, and calculate the NARs across 500 epi-
sodes. As Fig. 9b shows, VBA uses a high fps to pursue a
good fluency, which leads to a terrible NAR on latency. Sim-
ilarly, BBA has a large NAR on accuracy. The proposed Cut-
tlefish, which has the lowest NARs on both latency and
accuracy, rivals other baselines, indicating that Cuttlefish
can well mitigate the latency-accuracy-fluency tradeoff.
When applied to the videos with cars, as shown in Fig. 9d,
Cuttlefish still works well, which verifies its generalization
ability.

6 LIMITATIONS

In this section, we discuss several potential limitations and
future research directions.

More Representative State Space. Cuttlefish combines k pre-
vious configurations, the estimated bandwidth of the next
time slot, and the average velocity of all objects in a slot into
the state space. Although Cuttlefish performs well in exten-
sive evaluations, it could generate better configurations if
we design specific state spaces for different applications sce-
narios. For example, the number of previous configurations
used in Cuttlefish should depend on specific applications.

Deploying Cuttlefish in Practice. In our current implemen-
tation, Cuttlefish runs on the client-side of AR applications.
This approach offers several advantages over deployment
in edge servers. First, AR clients do not need to send obser-
vations to edge servers, which avoids unnecessary informa-
tion exchange and latency. Second, there is no need to
modify edge servers; in other words, this adaptive configu-
ration selection can be transparent to edge servers. There-
fore, client-side Cuttlefish can be seen as an overlay on the
existing AR applications; whenever there is failure in Cut-
tlefish, we could disable the configuration selection service
and fall back to the default one. This fault recovery mecha-
nism could be invaluable.

7 RELATED WORK

Existing studies on ABR algorithms can be roughly grouped
into two classes, i.e., rate-based and buffer-based. Rate-based
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algorithms [31], [33] first estimate the available network band-
width based on past several chunk downloads, and then
request video chunks at the highest bitrate that matches the
bandwidth estimation. For example, Festive [33] predicts
throughput in a harmonic mean of the experienced through-
put for the past 5 chunk downloads. Apart from the efficient
bandwidth utilization and streaming transmission, compared
to the traditional ABR problem, our proposed AR adaptive
video streaming achieve an efficient object detection.

AR provides helpful information for those things we
don’t notice or understand, while it’s costly in terms of time
and computing resources, thus it has to offload the detect-
ing computation to cloud. Existing researches focused on
tradeoff between delay and accuracy through intelligent off-
loading or adaptive configuration. Liu et al. [34] observed
that Rol changes in the user’s view, decoupled the render-
ing pipeline from the offloading pipeline, and used a fast
objecting tracking method locally. Liu et al. [35] designed an
edge network orchestrator consisting of server assignment
and frame resolution selection to mitigate the latency-
accuracy trade-off. Jiang et al. [36] presented Chameleon to
dynamically pick the best configuration for existing NN-
based video analytics pipelines. Zhang et al. [37] presented
AWStream to automatically learns an optimal profile that
models accuracy and bandwidth tradeoff. Other mobile AR
researches [38], [39] showed their useful insights. In com-
parison, we explore an adaptive configuration through
learning methods from past experiences.

Recently, DRL has achieved promising results in many
different domains. Mao et al. [18], [19], [40] adopted DRL to
adjust streaming rates to cope with unstable network, sched-
uled Spark jobs with efficient resources usage, and presented
Park for researchers to experiment with Reinforcement
Learning (RL) for computer systems. Mirhoseini et al. [41]
used DRL to optimize the operator placement of a Tensor-
Flow computation graph in a single machine. In [42], Xu et al.
applied DRL for routing path selection in traffic. In [43], [44],
[45], [46], the authors considered a multi-user MEC system,
and proposed A3C based optimization framework to tackle
resource allocation for MEC. Zhang et al. [47] proposed
ReLeS for Multipath TCP, which supports a real-time packet
scheduling. To our best knowledge, Cuttlefish is the first to
apply DRL to realize adaptive video configuration.

8 CONCLUSION

This paper presents Cuttlefish, a deep learning-based system
that obtains guaranteed detecting accuracy as well as latency
through adaptive configuration. We observed the variability
of bandwidth, time-shifted moving velocity of target objects,
and similarity among adjacent frames, and all these factors
affect the final encoded configuration. Thus, we combine
them and propose Cuttlefish with a policy network, which
takes the estimated bandwidth, captured velocity and other
historical information as input, and output the configuration
distribution. We leverage advanced YOLOV3 as the detecting
algorithm, and adopt the state-of-the-art A3C model to train
Cuttlefish with numerous real traces from YouTube. We com-
pared Cuttlefish to several state-of-the-art bandwidth-based
and velocity-based methods. The results shows that Cuttlefish
can achieve 18.4-25.8 percent higher QoE. In the follow-up

work, we focus on improving Cuttlefish by evaluating more
types of videos, and finally implement it in real AR systems.

ACKNOWLEDGMENTS

This work was supported in part by National Key R&D
Program of China (2017YFB1001801), NSFC (61872175,
61832008), Natural Science Foundation of Jiangsu Province
(BK20181252), Jiangsu Key R&D Program (BE2018116), Fun-
damental Research Funds for the Central Universities
(14380060), and Collaborative Innovation Center of Novel
Software Technology and Industrialization.

REFERENCES

[11 R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and
Maclntyre, “Recent advances in augmented reality,” IEEE Comput.
Graphics Appl., vol. 21, no. 6, pp. 34—47, Nov./Dec. 2001.

[2] G. Westerfield, A. Mitrovic, and M. Billinghurst, “Intelligent aug-
mented reality training for motherboard assembly,” Int. J. Artif.
Intell. Educ., vol. 25, no. 1, pp. 157-172, 2015.

[3] M. Akcayur and G. Akcayer, “Advantages and challenges associ-
ated with augmented reality for education: A systematic review
of the literature,” Educ. Res. Rev., vol. 20, pp. 1-11, 2017.

[4] Virtual reality and augmented reality device sales to hit 99 million devi-
ces in 2021, 2017. [Online]. Available: http://www.capacitymedia.
com/ Article/3755961 / VR-and-AR-device-shipments-to-hit-99m-by-
2021

[5] The reality of VR/AR growth, 2017. [Online]. Available: https://
techcrunch.com/2017/01/11/the-reality-of-vrar-growth/

[6] Microsoft hololens, 2020. [Online]. Available: https://www.
microsoft.com/en-us/hololens/

[7] Magic leap one, 2020. [Online]. Available: https://www.
magicleap.com/

[8] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet Things ]., vol. 3, no. 5,
pp. 637-646, Oct. 2016.

[9] M. Satyanarayanan, “The emergence of edge computing,” IEEE
Comput., vol. 50, no. 1, pp. 30-39, Jan. 2017.

[10] R.Roman, J. Lopez, and M. Mambo, “Mobile edge computing, fog
et al.: A survey and analysis of security threats and challenges,”
Future Gener. Comput. Syst., vol. 78, pp. 680-698, 2018.

[11] J.Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2016, pp. 779-788.

[12] J.Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 6517-6525.

[13] J. Redmon and A. Farhadi, “YOLOvV3: An incremental improve-
ment,” 2018, arXiv: 1804.02767[cs.CV]. [Online]. Available:
https:/ /ui.adsabs.harvard.edu/abs/2018arXiv180402767R

[14] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, 2015, Art. no. 529.

[15] V. Mnih ef al., “Asynchronous methods for deep reinforcement
learning,” in Proc. 33rd Int. Conf. Mach. Learn., 2016, pp. 1928-1937.

[16] P. Henderson, R. Islam, P. Bachman, ]. Pineau, D. Precup, and
D. Meger, “Deep reinforcement learning that matters,” in Proc.
AAAI Conf. Artif. Intell., 2018, pp. 3207-3222.

[17] D. Silver et al., “Mastering the game of go without human knowl-
edge,” Nature, vol. 550, no. 7676, 2017, Art. no. 354.

[18] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video
streaming with pensieve,” in Proc. Conf. ACM Special Interest
Group Data Commun., 2017, pp. 197-210.

[191 H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing
clusters,” in Proc. ACM Special Interest Group Data Commun., 2019,
pp- 270-288.

[20] K. Winstein, A. Sivaraman, and H. Balakrishnan, “Stochastic fore-
casts achieve high throughput and low delay over cellular
networks,” in Proc. 10th USENIX Conf. Netw. Syst. Des. Implementa-
tion, 2013, pp. 459-472.

[21] R. Netravali et al., “Mahimahi: Accurate record-and-replay for
HTTP,” in Proc. USENIX Conf. Usenix Annu. Tech. Conf., 2015,
pp. 417-429.

Authorized licensed use limited to: Nanjing University. Downloaded on March 17,2023 at 06:46:08 UTC from IEEE Xplore. Restrictions apply.


http://www.capacitymedia.com/Article/3755961/VR-and-AR-device-shipments-to-hit-99m-by-2021
http://www.capacitymedia.com/Article/3755961/VR-and-AR-device-shipments-to-hit-99m-by-2021
http://www.capacitymedia.com/Article/3755961/VR-and-AR-device-shipments-to-hit-99m-by-2021
https://techcrunch.com/2017/01/11/the-reality-of-vrar-growth/
https://techcrunch.com/2017/01/11/the-reality-of-vrar-growth/
https://www.microsoft.com/en-us/hololens/
https://www.microsoft.com/en-us/hololens/
https://www.magicleap.com/
https://www.magicleap.com/
https://ui.adsabs.harvard.edu/abs/2018arXiv180402767R

840

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 4, APRIL 2021

S. Craw, “Manhattan distance,” in Encyclopedia of Machine Learning
and Data Mining. Berlin, Germany: Springer, 2017, pp. 790-791.

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes (VOC) challenge,”
Int. J. Comput. Vis., vol. 88, no. 2, pp. 303-338, 2010.

R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour,
“Policy gradient methods for reinforcement learning with func-
tion approximation,” in Proc. 12th Int. Conf. Neural Inf. Process.
Syst., 2000, pp. 1057-1063.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: MIT Press, 2018.

Federal communications commission, 2016. [Online]. Available:
https:/ /www.fcc.gov/reports-research/reports/measuring-
broadband-americ a/raw-data-measuring-broadband-america-
2016

G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision With
the OpenCV Library. Sebastopol, CA, USA: O'Reilly Media, 2008.
A. Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” in Proc. 33rd Int. Conf. Neural Inf. Process.
Syst., 2019, pp. 8026-8037.

A. Dosovitskiy et al., “FlowNet: Learning optical flow with convo-
lutional networks,” in Proc. IEEE Int. Conf. Comput. Vis., 2015,
pp. 2758-2766.

K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” 2014, arXiv:1409.1556
[cs.CV]. [Online]. Available: https:/ /ui.adsabs.harvard.edu/abs/
2014arXiv1409.15565

Y. Sun et al., “CS2P: Improving video bitrate selection and adapta-
tion with data-driven throughput prediction,” in Proc. ACM SIG-
COMM Conf., 2016, pp. 272-285.

X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over HTTP,” in
Proc. ACM Conf. Special Interest Group Data Commun., 2015,
pp. 325-338.

J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency,
and stability in HTTP-based adaptive video streaming with FES-
TIVE,” in Proc. 8th Int. Conf. Emerg. Netw. Experiments Technol.,
2012, pp. 97-108.

L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object
detection for mobile augmented reality,” in Proc. 25th Annu. Int.
Conf. Mobile Comput. Netw., 2019, Art. no. 25.

Q. Liu, S. Huang, J. Opadere, and T. Han, “An edge network
orchestrator for mobile augmented reality,” in Proc. IEEE Conf.
Comput. Commun., 2018, pp. 756-764.

J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: Scalable adaptation of video analytics,” in Proc.
Conf. ACM Special Interest Group Data Commun., 2018, pp. 253-266.
B. Zhang, X. Jin, S. Ratnasamy, ]. Wawrzynek, and E. A. Lee,
“AWStream: Adaptive wide-area streaming analytics,” in Proc.
Conf. ACM Special Interest Group Data Commun., 2018, pp. 236-252.
W. Zhang, B. Han, and P. Hui, “On the networking challenges of
mobile augmented reality,” in Proc. Workshop Virtual Reality Aug-
mented Reality Netw., 2017, pp. 24-29.

H. Qiu, F. Ahmad, F. Bai, M. Gruteser, and R. Govindan, “AVR:
Augmented vehicular reality,” in Proc. 16th Annu. Int. Conf. Mobile
Syst. Appl. Services, 2018, pp. 81-95.

H. Mao et al., “Park: An open platform for learning augmented com-
puter systems,” in Proc. 36th Int. Conf. Mach. Learn. Workshop, 2019,
pp- 2495-2506.

A. Mirhoseini et al., “Device placement optimization with rein-
forcement learning,” in Proc. 34th Int. Conf. Mach. Learn., 2017,
pp- 2430-2439.

Z. Xu et al., “Experience-driven networking: A deep reinforcement
learning based approach,” in Proc. IEEE Conf. Comput. Commun.,
2018, pp. 1871-1879.

J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning
based computation offloading and resource allocation for MEC,”
in Proc. IEEE Wireless Commun. Netw. Conf., 2018, pp. 1-6.

Y. He, F. R. Yu, N. Zhao, V. C. Leung, and H. Yin, “Software-
defined networks with mobile edge computing and caching for
smart cities: A big data deep reinforcement learning approach,”
IEEE Commun. Mag., vol. 55, no. 12, pp. 31-37, Dec. 2017.

X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis,
“Optimized computation offloading performance in virtual edge
computing systems via deep reinforcement learning,” IEEE Inter-
net Things J., vol. 6, no. 3, pp. 4005-4018, Jun. 2019.

[46]

[471

C. Zhang, Z. Liu, B. Gu, K. Yamori, and Y. Tanaka, “A deep rein-
forcement learning based approach for cost-and energy-aware
multi-flow mobile data offloading,” IEEE Trans. Commun.,
vol. E101.B, no. 7, pp. 1625-1634, 2018.

H. Zhang, W. Li, S. Gao, X. Wang, and B. Ye, “ReLeS: A neural adap-
tive multipath scheduler based on deep reinforcement learning,” in
Proc. IEEE Conf. Comput. Commun., 2019, pp. 1648-1656.

Ning Chen received the BS degree from the
Chongging University of Post and Telecommunica-
tion, China, in 2018. He is currently working toward
the PhD degree with the Department of Computer
Science and Technology, Nanjing University,
China, under the supervision of Prof. Sheng Zhang.
His research interests including edge computing,
deep reinforcement learning, and video streaming.
His publications include those appeared in IEEE
SECON and IEEE ICPADS.

Siyi Quan is currently working toward the under-
graduate degree with the Department of Computer
Science and Technology, Nanjing University,
China. He is a member of the State Key Laboratory
for Novel Software Technology. His research inter-
ests include distributed computing and edge com-
puting. So far, he has finished SRTP and his paper
about blockchain has been accepted by CSCWD
2020.

Sheng Zhang (Member, IEEE) received the BS
and PhD degrees from Nanjing University, China,
in 2008 and 2014, respectively. He is an associ-
ate professor with the Department of Computer
Science and Technology, Nanjing University,
China. He is also a member of the State Key Lab-
oratory for Novel Software Technology. His
research interests include cloud computing and
edge computing. To date, he has published more
than 70 papers, including those appeared in the
IEEE Transactions on Mobile Computing, IEEE

Transactions on Parallel and Distributed Systems, IEEE Transactions
on Computers, MobiHoc, ICDCS, INFOCOM, IWQoS, and ICPP. He
received the Best Paper Runner-Up Award from IEEE MASS 2012. He
is the recipient of the 2015 ACM China Doctoral Dissertation Nomination
Award. He is a senior member of CCF.

Jm

Zhuzhong Qian (Member, IEEE) received the PhD
degree from Nanjing University, China, in 2007. He
is an associate professor with the Department of
Computer Science and Technology, Nanjing Uni-
versity, China. His current research interests
include distributed systems and data center net-
working. He has published more than 40 papers in
referred journals and conferences, including the
IEEE Transactions on Parallel and Distributed Sys-
tems, INFOCOM, and IPDPS.

-

Yibo Jin (Member, IEEE) received the BS
degree from Nanjing University, China, in 2017,
where he is currently working toward the PhD
degree. He was a visiting student with the Hong
Kong Polytechnic University, Hong Kong, in
2017. His research interests include big data ana-
lytics, edge computing, and federated learning.

Authorized licensed use limited to: Nanjing University. Downloaded on March 17,2023 at 06:46:08 UTC from IEEE Xplore. Restrictions apply.


https://www.fcc.gov/reports-research/reports/measuring-broadband-americ a/raw-data-measuring-broadband-america-2016
https://www.fcc.gov/reports-research/reports/measuring-broadband-americ a/raw-data-measuring-broadband-america-2016
https://www.fcc.gov/reports-research/reports/measuring-broadband-americ a/raw-data-measuring-broadband-america-2016
https://ui.adsabs.harvard.edu/abs/2014arXiv1409.1556S
https://ui.adsabs.harvard.edu/abs/2014arXiv1409.1556S

CHEN ET AL.: CUTTLEFISH: NEURAL CONFIGURATION ADAPTATION FOR VIDEO ANALYSIS IN LIVE AUGMENTED REALITY 841

Jie Wu (Fellow, IEEE) is the director of the Center
for Networked Computing and Laura H. Carnell
professor at Temple University, Philadelphia,
Pennsylvania. He also serves as the director of
International Affairs at College of Science and
Technology. He served as chair of the Department
of Computer and Information Sciences from the
summer of 2009 to the summer of 2016 and asso-
ciate vice provost for International Affairs from the
fall of 2015 to the summer of 2017. Prior to joining
Temple University, he was a program director at
the National Science Foundation and was a distinguished professor at
Florida Atlantic University, Boca Raton, Florida. His current research
interests include mobile computing and wireless networks, routing proto-
cols, cloud and green computing, network trust and security, and social
network applications. He regularly publishes in scholarly journals, confer-
ence proceedings, and books. He serves on several editorial boards,
including the IEEE Transactions on Mobile Computing, IEEE Transac-
tions on Service Computing, Journal of Parallel and Distributed Comput-
ing, and Journal of Computer Science and Technology. He was general
co-chair for IEEE MASS 2006, IEEE IPDPS 2008, IEEE ICDCS 2013,
ACM MobiHoc 2014, ICPP 2016, and IEEE CNS 2016, as well as pro-
gram co-chair for IEEE INFOCOM 2011 and CCF CNCC 2013. He was
an |IEEE Computer Society distinguished visitor, ACM distinguished
speaker, and chair for the IEEE Technical Committee on Distributed Proc-
essing (TCDP). He is a CCF distinguished speaker. He is the recipient of
the 2011 China Computer Federation (CCF) Overseas Outstanding
Achievement Award.

Wenzhong Li (Member, IEEE) received the BS
and PhD degrees from Nanjing University, China,
both in computer science. He was an Alexander
von Humboldt Scholar fellow at the University
of Goettingen, Germany. He is currently a full
professor with the Department of Computer Sci-
ence, Nanjing University, China. His research
interests include distributed computing, data min-
ing, mobile cloud computing, wireless networks,
pervasive computing, and social networks. He
has published more than 100 peer-review papers
at international conferences and journals, which include INFOCOM,
UBICOMP, IJCAI, ACM Multimedia, ICDCS, the IEEE Communications
Magazine, IEEE/ACM Transactions on Networking (ToN), IEEE Journal
on Selected Areas in Communications (JSAC), IEEE Transactions on
Parallel and Distributed Systems (TPDS), IEEE Transactions on Wire-
less Communications (TWC), etc. He served as program co-chair of
MobiArch 2013 and registration chair of ICNP 2013. He was the TPC
member of several international conferences and the reviewer of many
journals. He is the principle investigator of three fundings from NSFC,
and the co-principle investigator of a China-Europe international
research staff exchange program. He is a member of ACM and China
Computer Federation (CCF). He was also the winner of the Best Paper
Award of ICC 2009 and APNet 2018.

Sanglu Lu (Member, IEEE) received the BS, MS,
and PhD degrees from Nanjing University, China,
in 1992, 1995, and 1997, respectively, all in com-
puter science. She is currently a professor with
the Department of Computer Science and Tech-
nology and the State Key Laboratory for Novel
Software Technology. Her research interests
include distributed computing, wireless networks,
and pervasive computing. She has published
more than 80 papers in referred journals and con-
ferences in the above areas.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Nanjing University. Downloaded on March 17,2023 at 06:46:08 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


