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ABSTRACT
The inference workload redistribution is a technique for evacuating
inference requests from hot edges to idle edges in edge collabo-
rative systems, thereby achieving inference workload balancing
for inference on different edges. However, with the continuous
development of edge accelerators, the resource utilization of edge
accelerators in executing inference requests in series is often low,
and when executing multiple inference requests in parallel, it faces
uncertain execution delays, different response-time Service Level
Objectives (SLOs), and the generality of inference workloads in
heterogeneous edge collaborative systems. To address these issues,
for the first time in the domain of inference workload redistribution,
we propose a Batch-aware Inference workload Redistribution and
Parallel execution scheme, called BIRP, to reduce the additional
latency caused by waiting for a single inference task during serial
execution, thereby improving the overall inference accuracy. BIRP
uses the Multi-Armed Bandit (MAB) algorithm to adjust hyper-
parameters of the Throughput Improvement Ratio (TIR) function
online for improving the overall inference accuracy. For nonlinear
terms in the problem, BIRP uses a piecewise linear approximation
to convert it into a Quadratic Programming (QP) problem, ensuring
the effectiveness of BIRP in theory. We prototype BIRP on an
edge collaborative system composed of three heterogeneous edges.
Based on real inference workload trace, we validate the superiority
of our algorithm compared to the state-of-the-art model selection-
based inference workload redistribution algorithm, with an overall
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1 INTRODUCTION
1Edge intelligence is a distributed computing paradigm that brings
computation and data storage closer to the edge of the network,
catering to the increasing demand for low-latency and high-accuracy
Deep Neural Network (DNN) inference processing [8, 25, 35, 38].
The utilization of DNN inference for extracting information fea-
tures from various data types such as images, sounds, and sequential
data [20], as well as leveraging the proximity of edges [4], has led
to extensive applications of edge intelligence in diverse domains,
including the Industrial Internet of Things(IIoT) [11], augmented
reality [5], smart cities [3], and so on.

However, one of the key challenges in edge intelligence is the
issue of DNN inference request workload imbalance [21], where
some edge devices experience heavy loads while others have lighter
loads, leading to inefficient resource utilization and reduced system
performance. To address this, researchers have proposed edge col-
laborative workload redistribution techniques, leveraging the prox-
imity of edge devices and DNN Inference characteristics to improve
system performance and resource utilization [1, 7, 10, 19, 30, 33].

These inference workload redistribution techniques are typi-
cally designed for uncertain edge-to-edge collaborative systems,

1Corresponding author: Zhuzhong Qian (qzz@nju.edu.cn) and Hesheng Sun
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Figure 1: Edge Collaborative System

involving intelligent decision algorithms based on reinforcement
learning [33], mixed-integer programming [1, 30], or game theo-
retic principles [10]. Then the workload redistribution results are
determined based on the latency and computation requirements of
different inference requests. There are also some studies [19, 29]
that aim to balance the tradeoff between inference accuracy and in-
ference latency by employing different versions of inference models.
In addition, some research [7] focuses on predicting the distribution
of workloads to provide a decision-making basis for the placement
of edge servers and the real-time placement of inference models.

The algorithms for workload redistribution effectively balance
the workload among edge devices and improve the system per-
formance of edge devices. However, the execution of these in-
ference workloads is commonly performed in a serialized man-
ner [1, 7, 10, 19, 30, 33]. With the continuous upgrading and itera-
tion of edges [26–28], a single DNN inference model executed at
the edge often fails to fully leverage the Streaming Multiprocessors
(SMs) of edge accelerators, resulting in limitations in the utilization
of system resources and performance improvement[34]. As shown
in Table. 1, we execute edge inference sequentially with different
accelerators for various tasks such as image recognition, object
detection, and text classification using different models. When im-
plementing BERT [9], YOLOv4-t [2], and ResNet-18 [16] models,
the utilization rates of CPU, GPU, and Neural Processing Unit (NPU)
are limited to 29.2%, 72.4%, and 31.2% respectively.

The inherent constraints of resource utilization in the se-
quential execution of DNN inference models on different
accelerators pose a significant barrier to enhancing system
performance. However, these limitations also present valuable
opportunities for improving system efficiency through the adop-
tion of parallel execution approaches. But parallel execution of
redistributed inference tasks faces numerous problems:

Firstly, what types of inference workloads should be parallelized?
There have been approaches that propose kernel-level inference
workload parallelization techniques [15], as well as methods for
GPU virtualization [6]. However, these approaches often rely on
specific hardware configurations. For edge collaborative systems,
it is important to search for multi-workload parallel inference tech-
niques that are applicable to heterogeneous edges and various
frameworks.

Secondly, how much impact does parallel have on the original
inference workloads? In inference workload redistribution tech-
niques, it is often necessary to confirm the maximum workload that

each device can bear before making decisions in order to maximize
resource utilization and system performance [7, 19]. When using
multi-workload parallel inference, it is challenging to obtain this
information in advance due to issues such as unordered hardware
execution during parallelization.

Thirdly, under what workload conditions should multi-workload
parallel inference be employed? In order to achieve optimal system
performance, an application often maps multiple inference models,
where larger models generally result in higher inference accuracy
but also higher overhead costs [19, 29]. It is necessary to strike a
balance between the higher inference accuracy achieved by exe-
cuting large models and the high resource utilization during the
parallel execution of small models.

In order to address the new challenges brought bymulti-workload
parallel inference, we propose adopting a batch-aware parallel
approach to redistribute inference workloads, and accordingly
adjusting the inference models and corresponding batch sizes allo-
cated to different edges within the edge collaborative system.

For instance, as Fig. 1 shows, five edges within the system and
three types of inference applications: blue, yellow, and purple. Edges
7 and 9 are relatively idle, with a small number of tasks being
executed on edge 7. However, edges 2 and 5 are currently under
high load and require a redistribution of inference workload. For
edge 2, the purple or blue inference request can be transferred,
while for edge 5, the choice is between edge 7 or edge 9. The batch-
aware approach suggests that requests of the same type of inference
should be executed in the same batch (same color) on the same edge.
Therefore, in this example, edge 5 will redistribute its own request
to edge 9, and edge 2 will redistribute the blue task to edge 4.

Specifically, first, we merge inference requests belonging to the
same intelligent application into a single request vector, allowing
these requests to be executed in parallel using the weights of the
same inference model within a time slot. We measure the perfor-
mance improvement of the inference model after merging requests
using the concept of the Throughput Improvement Ratio (TIR).

Then, based on the edge collaborative system limits, accuracy
parameters of different versions of inference models, and the TIR
function, we construct an inference workload redistribution opti-
mization problem for multiple applications based on model version
selection and batch size selection, with the goal of optimizing the
overall inference accuracy. For solving the overall optimization
problem, we use a learning-based approach to obtain the hyperpa-
rameters of the TIR function during execution. Then a piecewise
linear fitting approach is used to adjust the optimization problem
structure based on the hyperparameters chosen at each time step,
transforming the original problem into a quadratic integer program-
ming problem.

Finally, we implement our algorithm on an edge collaborative
system with three heterogeneous edges. Compared to state-of-the-
art inference workload redistribution method [19], the algorithm
has achieved significant improvement in terms of overall inference
accuracy and the response-time Service Level Objective (SLO).

The primary contributions of this paper can be summarized as
follows:

• For the first time in the domain of inference workload re-
distribution, we propose a Batch-aware Inference workload
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redistribution and Parallel execution scheme, called BIRP,
to reduce the additional latency caused by waiting for a sin-
gle inference task during serial execution, thereby improving
the overall inference accuracy.

• We propose a dynamic batch decision-making method for
uncertain TIR functions based on the Mulit-Armed Bandit
(MAB) strategy, which can decouple the problem of inference
workload redistribution in different time slots in an online
manner. This method can guarantee optimality in long-term
execution.

• We prototype BIRP on an edge collaborative system com-
posed of three heterogeneous edges. Based on real inference
workload trace, we validate the superiority of our algorithm
compared to the state-of-the-art model selection-based in-
ference workload redistribution algorithm OAEI [19], with
an overall inference loss reduction of at least 32.9% and the
failure rate of SLO has been reduced to 19.8% of OAEI [19].

2 BACKGROUND AND MOTIVATION
2.1 Background
DNN inference. Deep neural networks (DNN) is a type of machine
learning model, characterized by multiple layers of interconnected
neurons[20]. Nowadays, DNN inference has achieved significant
success in applications such as image classification [16], object
detection [2], text classification [9], and more.

Edge accelerators. Hardware accelerators with parallel ac-
celeration capabilities are needed for processing DNN inference
models, often with multiple Streaming Multiprocessors (SMs). Edge
accelerators have also emerged gradually [13, 18, 23]. Compared
to accelerators in the cloud, edge accelerators prioritize energy
efficiency, miniaturization, and optimization for the DNN inference
phase [26].

Workload redistribution. Workload redistribution refers to
the edge collaborative system scheduler that can set a time slot
smaller than the inference response-time SLO and adjust the work-
load of each edge in the edge collaborative system every time slot,
thus meeting the SLO of intelligent applications and balancing the
inference workloads of different edges to avoid the occurrence of
stragglers [19, 33]. However, some small inference models are un-
able to utilize all SMs of edges, and the waiting time for inference
requests during serial execution leads to low utilization of various
resources at the edge.

2.2 Motivation
Edge resource low utilization. As in Table. 1, we implement
different inference models on Huawei Atlas 200DK [18] and Jetson
Nano [23] respectively. We use Ascend Tensor Compiler (ATC) [18]
to deploy inferences on Huawei Atlas 200DK and TensorRT [22]
on Jetson Nano, such that these inferences can be highly optimized
and invoked by Python. Four commonly used inference models
are considered here, as shown in Table 1: Yolov4-tiny [2], Yolov4-
normal [2], Resnet-18 [16], and BERT [9].

We measure the average Frame Per Second (FPS) for image in-
ferences, while for BERT FPS means the number of texts analyzed
in one second. In addition, we also measure the utilization of vari-
ous computational resources of the edge accelerators. As shown in

Table. 1, Atlas uses Neural Processor Unit (NPU) as the accelerator
of computation-intensive bottleneck, while Nano uses GPU as the
accelerator. For small models such as Yolov4-t, GPU and NPU usage
can not meet the 75% at both Atlas and Nano. Even large models like
BERT do not exceed 50% CPU utilization on two different devices.
When implementing BERT, YOLOv4-t, and ResNet-18 models, the
utilization rates of CPU, GPU, and Neural Processing Unit (NPU)
are limited to 29.2%, 72.4%, and 31.2% respectively.

Batch-aware multi-workload inference. The batch-aware
approach combines multiple inference requests of the same type
into one request vector and shares the weight parameters of the
DNN inference model to achieve parallel execution of multiple
inference workloads. General frameworks such as PyTorch and
TensorFlow support dynamic batch inference, and some specialized
device inference frameworks also support batch-aware inference,
such as ATC and TensorRT. But how do different models behave
with batch-aware methods in terms of throughput improvement
on different edges?

To address this question, we first implement three image recog-
nition models, GoogleNet, LeNet, and ResNet-18, on Jetson Nano
with varying batch sizes, denoted as 𝑏, and measure the number
of task batches completed within a fixed time, denoted as 𝑛. The
throughput under different batch sizes can be calculated as 𝑛 ∗ 𝑏.
We use the throughput at batch size 1 as the baseline throughput
and describe the impact of batch size growth on throughput en-
hancement using the Throughput Improvement Ratio (TIR),
which is defined as

𝑇 𝐼𝑅𝑚𝑜𝑑𝑒𝑙 (𝑏) =
𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑡 (𝑏)
𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑡 (1) . (1)

The experimental results are shown in Figure. 2. We conducted
five experiments for each batch of each model. In the three figures
of Figure. 2, blue dots represent the raw data of (batch-size, TIR).
The green line represents the relationship between TIR and batch
size, which can be represented by a constant function as the batch
size increases. The red line represents the fitting curve of the TIR
function when the batch size is less than the threshold value 𝑏0.

This experiment’s results demonstrate that: despite the differ-
ences in models and equipment, the variation pattern of TIR
remains the same: a piecewise function that includes a power
function and a constant function can well fit the functional rela-
tionship between the TIR and the batch size.

In other words, the relationship between the 𝑇 𝐼𝑅𝑘
𝑗
of a model 𝑗

on device 𝑘 and the batch size 𝑏 can be described as a piecewise
function as follows:

𝑇 𝐼𝑅 𝑗𝑘 =

{
𝑏
𝜂𝑘
𝑗 , 𝑏 ≤ 𝛽𝑘

𝑗
,

𝐶𝑘
𝑗
, 𝑏 > 𝛽𝑘

𝑗
.

(2)

In the above expression, 𝜂𝑘
𝑗
, 𝛽𝑘

𝑗
, and 𝐶𝑘

𝑗
are three coefficients

related to the edge 𝑘 and the selected model 𝑗 , representing the
power function growth coefficient, the threshold for the transition
of the relationship, and the maximum achievable TIR improvement,
respectively.

Due to the numerous types and models of applications applied
in edge collaborative systems and the heterogeneity of edge types
participating in collaboration, it is difficult for us to predict the
function representation of different models on heterogeneous edges
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Table 1: Inference Resource Usage and Performance upon Heterogeneous Edges

Inference Edge Types CPU Usage (%) GPU Usage (%) NPU Usage (%) NPU Core Usage (%) Average FPS
Yolov4-t Jetson Nano 97.9 72.4 / / 23.6
Yolov4-t Atlas 200DK 99.1 / 12.6 31.2 64.6
Yolov4-n Jetson Nano 37.5 99.9 / / 4.4
Yolov4-n Atlas 200DK 45.5 / 3.1 71.5 18.7
ResNet-18 Jetson Nano 99.9 61.2 / / 32.2
ResNet-18 Atlas 200DK 99.9 / 11.2 25.1 78.8
BERT Jetson Nano 29.2 98.5 / / 1.1
BERT Atlas 200DK 36.7 / 0.0 82.3 9.1

for TIR beforehand. Thus, we need to propose a method that allows
for the dynamic determination of the TIR function coefficients
during the process of inference workload redistribution.

3 SYSTEM MODEL
First, we present a batch-aware inference workload redistribution
architecture for edge collaborative systems. Based on this, the deci-
sion variables of the system are introduced. Next, we present the
key constraints in this framework, including network, memory, and
computation capacity. Finally, we provide the objectives and overall
formulation of the problem.

3.1 Decision Variables
As Figure. 1 shows, we consider an edge systemwithK = {1, . . . , 𝐾}
edges, where each edge is responsible for a specific area that gener-
ates I = {1, . . . , 𝐼 } different types of intelligent applications. The
size of the inference workload generated in the area of edge 𝑘 by
application 𝑖 during time slot 𝑡 is denoted by 𝑟𝑡

𝑖𝑘
. Each intelligent

application 𝑖 may have 𝐽𝑖 inference models, with corresponding
numbers denoted by 𝑗𝑖 ≤ 𝐽𝑖 .

There are a total of 𝑇 time slots in which workload inference
redistribution needs to be performed. At the beginning of each
time slot 𝑡 , the cloud-edge interface determines the distribution of
each edge inference workload, the type of deployed DNN inference
models, and their corresponding batch size on each edge.

Inference workload decisions. The quantity of inference
workload generated by the intelligent application 𝑖 on device 𝑘 at
time 𝑡 and transferred to device 𝑘

′
is described as 𝑦𝑡

𝑖𝑘𝑘 ′ . At each
time 𝑡 , the inference workload distribution of all devices in the
edge collaborative system will be recalculated for each intelligent
application 𝑖 .

The quantity of inference workload transferred from each device
𝑘 satisfies the following relationship:

∀𝑡, 𝑖, 𝑘,
∑︁

𝑘 ′ 𝑦
𝑡
𝑖𝑘𝑘 ′ = 𝑟

𝑡
𝑖𝑘
. (3)

Inference model and batch size decisions. To handle the
redistributed workload, at each time 𝑡 and for each edge 𝑘 , we
need to make decisions on which inference models should be de-
ployed and what parallel features (batch size) each inference model
corresponds to for each intelligent application 𝑖 .

The variable 𝑥𝑡
𝑖 𝑗𝑘

∈ {0, 1} is used to indicate whether the corre-
sponding inference model 𝑗 of application 𝑖 is deployed on edge

𝑘 during time slot 𝑡 . The variable 𝑏𝑡
𝑖 𝑗

∈ 𝑁 is used to represent
the batch size corresponding to the deployed inference model 𝑗 of
application 𝑖 on edge 𝑘 during time slot 𝑡 .

Only after deploying the inference model can we make decisions
about the batch size. Therefore, these two decision variables have
the following constraints:

∀𝑡, 𝑘, 𝑖, 𝑗, 𝑏𝑡
𝑖 𝑗𝑘

(𝑥𝑡
𝑖 𝑗𝑘

− 1) = 0, 𝑏𝑡
𝑖 𝑗𝑘

≥ 𝑥𝑡
𝑖 𝑗𝑘
. (4)

Decision variables relationship. Once the inference workload
distribution is finished, it should be ensured at the current time slot
𝑡 that all workloads transferred to edge 𝑘 for intelligent application
𝑖 can be completed by the inference models deployed on that edge.
In other words,

∀𝑡, 𝑘, 𝑖,
∑︁

𝑗
𝑥𝑡
𝑖 𝑗𝑘
𝑏𝑡
𝑖 𝑗𝑘

=
∑︁

𝑘 ′ 𝑦
𝑡
𝑖𝑘 ′𝑘 . (5)

3.2 System Limits
The edge collaborative system is subject to resource limitations in
three aspects: memory constraints, computational capacity limita-
tions, and wireless bandwidth constraints.

Memory constraints. At each time slot, in order to avoid the
overhead of switching the inference model between memory and
storage, we load all the inference models into the memory of the
edge accelerator and execute each inference in a time-sliced manner.
The memory required for the weights of the DNN inference model
𝑗𝑖 is 𝛿 𝑗𝑖 , and the memory required for intermediate variables when
the batch size is 1 is 𝜇 𝑗𝑖 . Therefore, for each time slot 𝑡 and edge 𝑘 ,
we have the following equation:

∀𝑡, 𝑘,
∑︁

𝑖

∑︁
𝑗
𝑥𝑡
𝑖 𝑗𝑘

(𝛿 𝑗𝑖 + 𝜇 𝑗𝑖𝑏𝑡𝑖 𝑗𝑘 ) ≤ 𝑀𝑘 , (6)

where𝑀𝑘 denoted the memory of edge 𝑘 .
Computational capacity limitations. There aremanyworks [36,

37] that predict the computation latency of a single inference on
different devices. We use the method proposed in reference [36].
𝛾𝑘
𝑗𝑖
is used to represent the computation latency of inference 𝑗𝑖 on

edge 𝑘 . According to the aforementioned definition of TIR functions
Eq. 2, when inference 𝑗𝑖 executed in a batch-aware manner, the
overall computation time is

𝑓 𝑘𝑗𝑖 (𝑏
𝑡
𝑖 𝑗𝑘

) =
𝑏𝑡
𝑖 𝑗𝑘
𝛾𝑘
𝑗𝑖

𝑇 𝐼𝑅𝑘
𝑗𝑖
(𝑏𝑡

𝑖 𝑗𝑘
)
=


𝛾𝑘
𝑗𝑖
(𝑏𝑡

𝑖 𝑗𝑘
)1−𝜂𝑘

𝑗𝑖 , 𝑏𝑡
𝑖 𝑗𝑘

≤ 𝛽𝑘
𝑗𝑖
,

𝛾𝑘
𝑗𝑖
𝑏𝑡
𝑖 𝑗𝑘

/𝐶𝑘
𝑗𝑖
, 𝑏𝑡

𝑖 𝑗𝑘
> 𝛽𝑘

𝑗𝑖
,
. (7)

75



BIRP: Batch-aware Inference Workload Redistribution and Parallel Scheme for Edge Collaboration ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Batch Size b

0.9

1.2

1.5

1.8

T
IR

o
f

L
eN

et

TIR=b0.32, b ≤ 5

TIR=1.68, b > 5

TIR Raw Data

(a) The LeNet TIR fitting function.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Batch Size b

0.8

1.0

1.2

1.4

T
IR

o
f

G
o

o
g

L
eN

et

TIR=b0.12, b ≤ 10

TIR=1.30, b > 10

TIR Raw Data

(b) The GoogLeNet TIR fitting function.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Batch Size b

0.8

1.0

1.2

1.4

T
IR

o
f

R
es

N
et

-1
8

TIR=b0.12, b ≤ 8

TIR=1.28, b > 8

TIR Raw Data

(c) The ResNet-18 TIR fitting function.

Figure 2: The fitting results of different inference models TIR function.

Thus, the sum of computation time for all inference models on
an edge 𝑘 should not exceed the time slot duration 𝜏 :

∀𝑡, 𝑘,
∑︁

𝑖

∑︁
𝑗
𝑥𝑡
𝑖 𝑗𝑘
𝑓 𝑘𝑗𝑖 (𝑏

𝑡
𝑖 𝑗𝑘

) ≤ 𝜏 . (8)

Wireless bandwidth constraints. For each edge 𝑘 at time slot
𝑡 , the wireless bandwidth constraints are represented as

∀𝑡, 𝑘,
∑︁

𝑖

∑︁
𝑗
𝜉 𝑗𝑖 [𝑥𝑡𝑖 𝑗𝑘 − 𝑥𝑡−1

𝑖 𝑗𝑘
]++∑︁

𝑖
𝜁𝑖

∑︁
𝑘 ′,𝑘 ′≠𝑘

(𝑦𝑡
𝑖𝑘𝑘 ′ + 𝑦𝑡𝑖𝑘 ′𝑘 ) ≤ 𝑁 𝑡

𝑘
.

(9)

The first term represents the network resource consumption
brought by model changes, where 𝜉 𝑗𝑖 represents the cost of in-
ference 𝑗𝑖 in network transmission, and [𝑎]+ represents function
𝑚𝑎𝑥𝑎, 0. The second term represents the network resource con-
sumption brought by the redistribution of inference workload,
where 𝜁𝑖 represents the cost of forwarding an inference request 𝑖 .
𝑁 𝑡
𝑘
represents the total network resources at edge 𝑘 at time slot 𝑡 .

3.3 Problem Formulation
Optimization goals. Our optimization objective is to achieve the
highest inference accuracy for all inference workloads within the
edge collaborative system, which means

min
∑︁

𝑡

∑︁
𝑘

∑︁
𝑖

∑︁
𝑗
𝑙𝑜𝑠𝑠𝑖 𝑗𝑥

𝑡
𝑖 𝑗𝑘
𝑏𝑡
𝑖 𝑗𝑘
, (10)

where 𝑙𝑜𝑠𝑠 𝑗𝑖 is used to denote inference error of model 𝑗𝑖 . The lower
the inference error, the higher the inference accuracy. Therefore,
the global goal is to minimize the overall loss.

Problem formulation. Taking the above equations into ac-
count, the optimization problem can be written as:

P0 : min
𝒙,𝒚,𝒃

∑︁
𝑡

∑︁
𝑘

∑︁
𝑖

∑︁
𝑗

𝑙𝑜𝑠𝑠𝑖 𝑗𝑥
𝑡
𝑖 𝑗𝑘
𝑏𝑡
𝑖 𝑗𝑘
,

𝑠 .𝑡 . 𝐸𝑞. 3 − 𝐸𝑞. 9,

where 𝒙 ,𝒚, and 𝒃 are tensors with dimensions [𝑇, |K |, |I |,max{𝐽𝑖 }],
[𝑇, |I |, |K |, |K |], and [𝑇, |K |, |I |,max{𝐽𝑖 }] respectively.2

4 ALGORITHM DESIGN
The difficulty in solving problem P0 mainly comes from three
aspects: firstly, three hyperparameters in the TIR function are un-
known and need to be dynamically obtained; secondly, there are
constraints coupling between the various time slots; thirdly, the
2If the number of corresponding models for application 𝑖 is less than max{ 𝐽𝑖 }, for the
models that do not actually exist, we assign the corresponding parameters a value of
either 0 or positive infinity. to prevent them from being selected. Thus it is equivalent
to the non-existence of those models.

Time Decoupling

Piecewise Function Decoupling

Initialize

Linear Fitting Method

Inference
Workload

Redistribution

Eq. 24, 25Eq. 24, 25

Hyperparameters Tuning
Based on MAB the Feedback

QP Solver

Eq. 16, or Eq.22

BIRP
Framework

Figure 3: BIRP framework (relationship between proposed
problems and algorithms).

computational condition constraints belong to piecewise functions
and contain non-linear terms;

In order to address these issues, we first decouple the optimiza-
tion problem into an online problem based on the resolutions ob-
tained in the previous time slot. Next, for problems with uncertain
hyperparameters, we balance exploration and exploitation based
on the idea of multi-armed bandits in order to find the long-term
optimal solution. Finally, for problems with non-linear terms, we
propose a linear fitting method based on the Mean Value Theorem
to simplify the solution process for each time slot, without causing
too much loss in inference accuracy.

4.1 Optimization Problem Decouple
The coupling of P0 involves two aspects: the decision variables and
the results of the solution at the previous time slot that can affect
the formulation of the current problem.

Piecewise functions decoupling. Eq. 7 and Eq. 8 are deter-
mined by piecewise functions, demonstrating the influence of de-
cision variables on the selection of the expression during solving
P0.

We note that in the piecewise function Eq. 7, the second segment
is a linear function, indicating that increasing the batch size has
little effect on the TIR, and as shown in Eq. 6, increasing the batch
size will increase memory usage, which instead causes the inference
loss to increase under the low inference workload.

In addition, at the threshold value 𝛽𝑘
𝑗𝑖
, the result of the linear

function is very close to that produced by the first segment as Fig-
ure. 2 shows. This indicates that when the batch is at the threshold
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value, the corresponding decision is better than when the batch
is greater than the threshold value. Therefore, for this piecewise
function, we only need the threshold point and the first segment.

In this way, TIR function can be transformed into:

𝑇 𝐼𝑅
𝑘,𝑡
𝑗𝑖

(𝑏𝑡
𝑖 𝑗𝑘

) = (𝑏𝑡
𝑖 𝑗𝑘

)𝜂
𝑘,𝑡
𝑗𝑖 , 𝑏𝑡

𝑖 𝑗𝑘
≤ 𝛽

𝑘,𝑡
𝑗𝑖

(11)

Then, the computational limitations described by Eq. 7 and Eq. 8
can be transformed as two constraints follows:

∀𝑡, 𝑘,
∑︁

𝑖

∑︁
𝑗
𝑥𝑡
𝑖 𝑗𝑘
𝛾𝑘𝑗𝑖 (𝑏

𝑡
𝑖 𝑗𝑘

)1−𝜂𝑘,𝑡
𝑗𝑖 ≤ 𝜏, 𝑏𝑡

𝑖 𝑗𝑘
≤ 𝛽

𝑘,𝑡
𝑗𝑖
. (12)

Here, 𝛽𝑘
𝑗𝑖
and 𝜂𝑘

𝑗𝑖
are both hyperparameters, and they will change

the function value. We use a Multi-Armed Bandit (MAB) based
method to estimate them, and the hyperparameter change in ev-
ery time slot, denoted by the superscript 𝑡 . Besides, 𝐶𝑘

𝑗𝑖
is also a

hyperparameter. Although it does not appear in Eq. 12, it affects
the selection of the other two hyperparameters. We will provide a
detailed introduction to this method in the next subsection.

Time decoupling. Eq. 9 indicates that the problem solution in
the current time slot depends on the solution of the previous time
slot. As model weights are often transmitted after compression,
compared with the inference workload redistribution, the consump-
tion of network resources is less and is not the determining factor.
Therefore, we simplify the process and do not seek to make deci-
sions on the model deployment method in the entire time domain.
Instead, we seek the optimal solution under the current workload,
and then treat it as a known quantity and pass it to the next time
slot, thus decoupling the problem in the time domain.

In other words, when 𝑥𝑡−1
𝑖 𝑗𝑘

= 0, we have

∀𝑘, 𝑡
∑︁
𝑖

𝜁𝑖

∑︁
𝑘 ′,𝑘 ′≠𝑘

(𝑦𝑡
𝑖𝑘𝑘 ′ + 𝑦𝑡𝑖𝑘 ′𝑘 ) ≤ 𝑁 𝑡

𝑘
. (13)

then the problem P0 can be transformed into P𝑡
1 at each time slot

𝑡 . The formulation of P𝑡
1 is as follows:

P𝑡
1 : min

𝒙,𝒚,𝒃

∑︁
𝑘

∑︁
𝑖

∑︁
𝑗

𝑙𝑜𝑠𝑠𝑖 𝑗𝑥
𝑡
𝑖 𝑗𝑘
𝑏𝑡
𝑖 𝑗𝑘
,

𝑠 .𝑡 . 𝐸𝑞. 3 − 𝐸𝑞. 6, 𝐸𝑞. 12, 𝐸𝑞. 13.

When 𝑥𝑡−1
𝑖 𝑗𝑘

= 1, Eq. 9 is transformed as follows:

∀𝑡, 𝑘,
∑︁
𝑖

∑︁
𝑗

𝜉 𝑗𝑖𝑥
𝑡
𝑖 𝑗𝑘

+
∑︁
𝑖

𝜁𝑖

∑︁
𝑘 ′,𝑘 ′≠𝑘

(𝑦𝑡
𝑖𝑘𝑘 ′ + 𝑦𝑡𝑖𝑘 ′𝑘 ) ≤ 𝑁 𝑡

𝑘
. (14)

Then the P0 can be transformed into P𝑡
2 at each time slot 𝑡 . The

formulation of P𝑡
2 is as follows:

P𝑡
2 : min

𝒙,𝒚,𝒃

∑︁
𝑘

∑︁
𝑖

∑︁
𝑗

𝑙𝑜𝑠𝑠𝑖 𝑗𝑥
𝑡
𝑖 𝑗𝑘
𝑏𝑡
𝑖 𝑗𝑘
,

𝑠 .𝑡 . 𝐸𝑞. 3 − 𝐸𝑞. 6, 𝐸𝑞. 12, 𝐸𝑞. 14.

4.2 Online Hyperparameters Tuning
As Eq. 7 shows and discussed in the motivation part and previous
section, there are three hyperparameters 𝛽𝑘

𝑗𝑖
, 𝜂𝑘

𝑗𝑖
, and 𝐶𝑘

𝑗𝑖
.

Historical estimates and observed values. At each time slot
𝑡 , we solve either problem P𝑡

1 or P𝑡
2 based on the solution obtained

in the previous time slot (the solution process of these two problems

will be discussed in the following subsection). When solving P𝑡
1 or

P𝑡
2 , hyperparameters are used with historical estimates.
We use ’¯’ to denote historical estimates of the hyperparameters,

i.e. 𝜂𝑘,𝑡
𝑗𝑖
, 𝐶𝑘,𝑡

𝑗𝑖
and 𝛽𝑘,𝑡

𝑗𝑖
. According to Eq. 2, the observed values

of these three hyperparameters can be calculated based on the
observed value of TIR. We use ’̂ ’ to represent the observed value
i.e. 𝑇 𝐼𝑅𝑘,𝑡𝑗𝑖 , 𝜂𝑘,𝑡

𝑗𝑖
, 𝐶𝑘,𝑡

𝑗𝑖
and 𝛽𝑘,𝑡

𝑗𝑖
.

We divide the process of tuning hyperparameters into two parts:
within thresholds and beyond thresholds, based on the difference
between the observed value of𝑇 𝐼𝑅𝑘,𝑡

𝑗𝑖
and the historical estimate of

𝐶
𝑘,𝑡
𝑗𝑖
. 𝑛𝑘,𝑡

𝑗𝑖 ,1 and 𝑛
𝑘,𝑡
𝑗𝑖 ,2 is used to represent the number of total times

𝑏𝑡
′

𝑖 𝑗𝑘
(𝑡 ′ < 𝑡) falls within the thresholds and beyond thresholds in

Eq. 2, respectively.
If the 𝑏𝑡

𝑖 𝑗𝑘
is within the threshold, only the 𝜂𝑘,𝑡

𝑗𝑖
need to be ad-

justed based on Eq. 11. However, if the value is beyond the threshold,
the threshold size needs to be adjusted based on Eq. 2. We will dis-
cuss two cases based on the values of 𝐶𝑘,𝑡

𝑗𝑖
and 𝑇 𝐼𝑅𝑘,𝑡𝑗𝑖 , in order to

gradually approach the observed value through historical estimates.
𝛽
𝑘,𝑡
𝑗𝑖

and𝐶𝑘,𝑡
𝑗𝑖

Tuning. At time slot 𝑡 , if the following conditions
are satisfied, which means 𝑏𝑡

𝑖 𝑗𝑘
is beyond the threshold,

𝑇 𝐼𝑅
𝑘,𝑡

𝑗𝑖
≥ (1 + 𝜖1) ∗𝐶𝑘,𝑡𝑗𝑖 , (15)

where 𝜖1 is a predetermined parameter, 𝛽𝑘,𝑡
𝑗𝑖

and𝐶𝑘,𝑡
𝑗𝑖

will be updated
as follows:

𝛽
𝑘,𝑡+1
𝑗𝑖

=
1

𝑛
𝑘,𝑡
𝑗𝑖 ,2 + 1

(
𝑏𝑡
𝑖 𝑗𝑘

− 𝛽𝑘,𝑡
𝑗𝑖

)
+ 𝛽𝑘,𝑡

𝑗𝑖
,

𝐶
𝑘,𝑡+1
𝑗𝑖

=
1

𝑛
𝑘,𝑡
𝑗𝑖 ,2 + 1

(
𝑇 𝐼𝑅

𝑘,𝑡

𝑗𝑖
−𝐶𝑘,𝑡

𝑗𝑖

)
+𝐶𝑘,𝑡

𝑗𝑖
.

(16)

Eq. 15 indicates that due to factors such as imprecise initializa-
tion and computation random changes, the historical estimated
threshold 𝛽𝑘,𝑡

𝑗𝑖
of TIR and 𝐶𝑘,𝑡

𝑗𝑖
at the previous time slot 𝑡 are inac-

curate and require readjustment. To account for these factors, we
use a predefined 𝜖1 to characterize the allowable range of changes
that the algorithm can tolerate.

Eq. 16 provides an unbiased estimation of 𝛽𝑘,𝑡
𝑗𝑖

and 𝐶𝑘,𝑡
𝑗𝑖

based
on their historical estimates. However, when the inference work-
load changes gradually, this will lead to a locally optimal solution.
Therefore, following the Multi-Armed Bandit (MAB) theory [37],
we adopt a balanced exploration-exploitation approach by using
the lower bound of the hyperparameter’s confidence interval.

We replace the historical estimates 𝛽𝑘,𝑡
𝑗𝑖

and 𝐶𝑘,𝑡
𝑗𝑖

with its lower
confidence bound without violating the original computing con-
straints. This approach allows for a balance between exploration
and exploitation. Specifically, we add a padding term that depends
on the historical estimation, as shown in the following equation:

𝛽
𝑘,𝑡+1
𝑗𝑖

=

⌈
𝛽
𝑘,𝑡+1
𝑗𝑖

{
1 −

√︃
𝜖2 ln (𝑡 + 1)/(𝑛𝑘,𝑡

𝑗𝑖 ,2 + 1)
}⌉
,

𝐶
𝑘,𝑡+1
𝑗𝑖

= 𝐶
𝑘,𝑡+1
𝑗𝑖

{
1 −

√︃
𝜖2 ln (𝑡 + 1)/(𝑛𝑘,𝑡

𝑗𝑖 ,2 + 1)
}
,

(17)
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where
√︃
𝜖2 ln (𝑡 + 1)/(𝑛𝑘,𝑡

𝑗𝑖 ,2 + 1) is the confidence interval ratio to

different hyperparameters [37], and 𝛽𝑘,𝑡+1
𝑗𝑖

is ceilinged due to the
threshold must be integers.

After the updates of 𝛽𝑘,𝑡
𝑗𝑖

and 𝐶𝑘,𝑡
𝑗𝑖
, the algorithm updates the

number of total times 𝑏𝑡
𝑖 𝑗𝑘

falls into the first and second stage
functions in Eq. 2 as follows:

𝑛
𝑘,𝑡+1
𝑗𝑖 ,1 = 𝑛

𝑘,𝑡
𝑗𝑖 ,1, 𝑛

𝑘,𝑡+1
𝑗𝑖 ,2 = 𝑛

𝑘,𝑡
𝑗𝑖 ,2 + 1. (18)

𝜂
𝑘,𝑡
𝑗𝑖

Tuning. Similarly, at time slot 𝑡 , if the conditions Eq. 15

are not satisfied, which means 𝑏𝑡
𝑖 𝑗𝑘

is within the thresholds, 𝜂𝑘,𝑡
𝑗𝑖

and 𝑛𝑘,𝑡
𝑗𝑖 ,1 will be updated as follows:

𝜂
𝑘,𝑡+1
𝑗𝑖

=
1

𝑛𝑡 + 1

(
𝜂
𝑘,𝑡
𝑗𝑖

− 𝜂𝑘,𝑡
𝑗𝑖

)
+ 𝜂𝑘,𝑡

𝑗𝑖
, (19)

𝑛
𝑘,𝑡+1
𝑗𝑖 ,1 = 𝑛

𝑘,𝑡
𝑗𝑖 ,1 + 1, 𝑛

𝑘,𝑡+1
𝑗𝑖 ,2 = 𝑛

𝑘,𝑡
𝑗𝑖 ,2, (20)

where

𝜂
𝑘,𝑡
𝑗𝑖

=
ln𝑇 𝐼𝑅𝑘,𝑡𝑗𝑖
ln𝑏𝑡

𝑖 𝑗𝑘

, 1 < 𝑏 ≤ 𝛽
𝑘,𝑡
𝑗𝑖
. (21)

After the update of historical estimate 𝜂𝑘,𝑡
𝑗𝑖
, We replace it with

its lower confidence bound as follows:

𝜂
𝑘,𝑡+1
𝑗𝑖

= 𝜂
𝑘,𝑡+1
𝑗𝑖

{
1 −

√︃
𝜖2 ln (𝑡 + 1)/(𝑛𝑘,𝑡

𝑗𝑖 ,2 + 1)
}
. (22)

Hyperparameter initialization. According to our experimen-
tal motivation observations, when executing batch-aware multi-
workload inference on different devices, we observed that their 𝜂𝑘

𝑗𝑖

is generally greater than 0.1 and 𝛽𝑘
𝑗𝑖
is less than 16. Thus, based on

the definition of TIR in Eq. 2, we assign initial values to these three
variables using a conservative approach.

𝜂
𝑘,0
𝑗𝑖

= 0.1, 𝛽𝑘,0
𝑗𝑖

= 16,𝐶𝑘,0
𝑗𝑖

= 160.1 ≈ 1.31 (23)

4.3 Linear Fitting Method
Despite the entire problem P0 decoupled into each time slot and the
values of each hyperparameter can be dynamically estimated, the
problem still lacks a good solution due to the inherent non-linear
function in Eq. 12.

To address this problem, we use the Taylor series to expand
Eq. 12 at the point (1,1) as linear constraints during solving P𝑡

1 or
P𝑡

2 . Specifically, we set

𝛾𝑘𝑗𝑖 (𝑏
𝑡
𝑖 𝑗𝑘

)1−𝜂𝑘,𝑡
𝑗𝑖 ≈ 𝛾𝑘𝑗𝑖

[
(1 − 𝜂𝑘,𝑡

𝑗𝑖
)𝑏𝑡

𝑖 𝑗𝑘
+ 𝜂𝑘,𝑡

𝑗𝑖

]
= ℎ

𝑘,𝑡
𝑗𝑖

(𝑏𝑡
𝑖 𝑗𝑘

) (24)

Then, we use Eq. 24 to replace the non-linear term in Eq. 12 and
obtain the following constraints:

∀𝑡, 𝑘,
∑︁

𝑖

∑︁
𝑗
𝑥𝑡
𝑖 𝑗𝑘

∗ ℎ𝑘,𝑡
𝑗𝑖

(𝑏𝑡
𝑖 𝑗𝑘

) ≤ 𝜏, 𝑏𝑡
𝑖 𝑗𝑘

≤ 𝛽
𝑘,𝑡
𝑗𝑖
. (25)

We ultimately formulate the problem P𝑡
1 or P𝑡

2 for each time slot 𝑡
as an integer quadratic programming problem, for which there exist
mature algorithms that can solve it quickly. We employ Gurobi [14]
for solving this problem. The overall framework of thisBatch-aware
Inference workload Redistribution and Parallel execution scheme,
called BIRP, is illustrated in Fig. 3.
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Figure 4: The impact of 𝜖1 and 𝜖2 selections on the Δ𝐿𝑜𝑠𝑠.
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Figure 5: The impact of 𝜖1 and 𝜖2 selections on the 𝑝%.

5 EXPERIMENTS AND EVALUATIONS
5.1 Experiments settings.
We prototype BIRP on an edge collaborative system composed of
three heterogeneous edges (Jetson NX, Jetson Nano, Atlas200DK),
with each type of edge having two instances. Each edge is respon-
sible for receiving the inference workloads generated by the termi-
nals within its own region. The cloud-edge interface, which is also
the workload redistribution scheduler, can perceive the inference
workload received by each edge in each time slot.

According to the literature [19], we have adopted the following
settings: each time slot is 15 minutes, a total duration of three days.
The inference workload trace comes from [34]. We employ five com-
mon intelligent applications in the industrial internet, including
object detection, face recognition, image recognition, neural lan-
guage understanding, and semantic segmentation. Each application
corresponds to five different DNN inference models, from Resnet-18
to BERT. The inference loss of these models varies in [0.15, 0.49].
Their inference time with one request on heterogeneous edges
varies in [18, 770] ms. The size of these inference weights varies
in [33, 550] MB. The compressed model weights consume network
resources vary in [7, 98] MB during transmission in the network.
When only one request is being executed for these DNN inference
models, the size of the intermediate results varies in [55, 480] MB.
The size of different inference requests varies in [0.2, 3] MB. The
network bandwidth of each edge per time slot varies in [50, 100]
Mbps. Excluding system overhead, the memory resources of each
edge vary in [4500, 6500] MB.

5.2 Comparative algorithms.
BIRP: our proposedBatch-aware Inferenceworkload redistribution
and Parallel execution scheme, which will be analyzed in the third
subsection for the impact of preset parameters, and compared with
other algorithms in the fourth subsection.
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OAEI: the state-of-the-artmodel selection-based inferencework-
load redistribution algorithm [19], using online learning and ran-
dom rounding to solve the optimal inference load balancing for
edge collaborative systems.

BIRP-OFF: Offline analysis of the relationship between batch
size and TIR, without performing online hyperparameters tuning,
directly solves for P𝑡

1 or P𝑡
2 to obtain the optimal distribution of

inference workload.
MAX: set a large batch size 𝐵0 which can optimize resource

utilization, and when performing workload redistribution, the in-
ference batch transfer must be followed according to the 𝐵0.

We use two types of metrics to evaluate BIRP: overall inference
loss and the failure rate 𝑝% that inference requests violate the
response-time SLO.

Note that we do not compare simple algorithms such as selecting
only the best model to improve accuracy, because these methods are
not better than OAEI [19]. In addition, we only tested BIRP-OFF on
5 models, as offline profiling the TIR function on different devices
takes a long time.

5.3 Preset parameters analysis.
We first evaluate the impact of the preset parameters’ values on the
two metrics, as shown in Fig. 4 and Fig. 5.

In BIRP, there are preset parameters: 𝜖1 and 𝜖2. 𝜖1 affects the
exploration stochastic changes of the TIR function over time, while
𝜖2 mainly affects the exploration efficiency.

The impact of ΔLoss. Regarding the overall inference loss, we
describe it using the cumulative error of BIRP and algorithm BIRP-
OFF as Δ𝐿𝑜𝑠𝑠 , where Δ𝐿𝑜𝑠𝑠 =

∑
𝑡 (𝑙𝑜𝑠𝑠𝐵𝐼𝑅𝑃 − 𝑙𝑜𝑠𝑠𝑜 𝑓 𝑓 ), in order to

characterize the impact of different preset parameters selections on
the inference loss. As Fig. 4a and Fig. 4b show, when 𝜖2 is large, the
padding of the MAB is also large, resulting in higher volatility and
larger cost for exploration. Therefore, when the 𝜖2 is large at the
initial stage, the Δ𝐿𝑜𝑠𝑠 increases significantly. As time goes on, the
padding decreases compared to the historical estimates, resulting
in a relatively small increase compared to other smaller 𝜖2. For
𝜖1, a smaller value can ensure a more accurate estimation of the
inference workload redistribution at the initial stage. However, as
time goes on, 𝜖1 also prevents BIRP from finding better values
for inference workload redistribution. That is, as shown in the
comparison between Fig. 4a and Fig. 4b, the lower part with smaller
𝜖1 quickly rises as time increases.

The impact of 𝑝%. Regarding the failure rate of SLO, we de-
scribe it as the percentage 𝑝% of inference workloads that were not
completed within SLO to the total inference workload, in order to
characterize the impact of 𝜖1 and 𝜖2 on the exploration cost. As
Fig. 5 shows, when 𝜖2 is small, the smaller padding of MAB leads
to a decrease in overall exploration and limits it to local optima. In
cases of high workload, the batch-aware parallel processing feature
is not fully utilized, resulting in an increase in 𝑝%. As 𝜖1 increases,
the high-tolerance threshold 𝛽𝑘,𝑡

𝑗𝑖
of TIR function causes BIRP to

favor exploration of larger batch sizes with optimism, resulting
in more resource consumption of larger models at the expense of
smaller models, leading to an increase in 𝑝%.

Therefore, we should choose appropriate values for 𝜖1 and 𝜖2,
neither too large nor too small. Based on Fig. 4 and Fig. 5, we choose

𝜖1 = 0.04 and 𝜖2 = 0.07. In the following subsection, BIRP will use
these presets for experiments.

5.4 Performance evaluation.
Firstly, we deployed BIRP on a small-scale heterogeneous edge
collaborative system with one application and 3 inference models
as shown in Fig. 6. The TIR function of these 3 models has been
measured offline. Then, we conducted a large-scale deployment
of BIRP with five applications and 25 models, and the results are
shown in Fig. 7.

CDF. We first compared the inference completion time distribu-
tions of different algorithms, as shown in Fig. 6a and Fig. 7a. When
𝑡 = 𝑇 +1, we provided the Cumulative Distribution Functions (CDF)
of inference completion time. As Fig. 6a shows, During the execu-
tion of the BIRP and BIRP-OFF algorithms, the failure rate of SLO
is 1.9%, that is, the proportion of inference workloads with 𝜏 ≥ 1.0
did not exceed 1.9% of the total. While the failure rate of OAEI is
10.0%.

The CDF of BIRP is slightly skewed to the right compared to
BIRP-OFF, but it does not affect the overall execution time. Instead,
this demonstrates that the tuning module of BIRP is effective
because their CDFs are close. The distribution of OAEI is dense
when 𝜏 ≤ 0.3, but becomes sparse when 0.3 < 𝜏 < 1. This is because
the single inference is completed quickly during serial execution,
but additional waiting time causes some inference completion time
to decrease when the workload is high. The pattern of MAX’s CDF
is exactly opposite to that of OAEI, because it tends to execute in
batches, resulting in an increase in the execution time of individual
inference.

As shown in Fig. 7a, when executed at a large scale, BIRP still
has significant advantages over algorithmsOAEI andMAX. This is
because BIRP can dynamically select the batch size and inference
model to achieve a decrease in overall completion time and a lower
failure rate. In Figure Fig. 7a, BIRP has a failure rate of 0.21%, while
OAEI has a failure rate of 4.1%. Compared to OAEI, BIRP’s failure
rate of SLO has decreased by to 19.8% of OAEI.

Inference loss. We evaluate the improvement of BIRP on
inference accuracy from two aspects: inference loss 𝑙𝑜𝑠𝑠𝑡 at time
slot 𝑡 and accumulated inference loss

∑
𝑡 𝑙𝑜𝑠𝑠𝑡 .

Due to the adoption of dynamic batch selection technology,BIRP
has more computational resources available for intelligent applica-
tions to choose better models for computation. Therefore, compared
to MAX and OAEI, BIRP achieved better results at each time slot
𝑡 as shown in Fig. 6b and Fig. 7b.

When the inference workload is low, OAEI and BIRP achieved
similar results, as serial execution of large models can still meet
the requirements of intelligent applications under low workloads.
MAX still had high loss under high workload, becauseMAX tends
to maximize utilization, but resource constraints make it difficult
to apply large model parallelism. Although MAX has a higher
resource utilization rate, it did not fully utilize the capabilities of
the models.

As shown in Fig. 6c, there is a slight difference between BIRP
and BIRP-OFF, which is due to the additional cost brought by
BIRP’s exploration phase. But as the inference workload redistri-
bution continues, this difference gradually approaches zero. After
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Figure 6: Inference workload redistribution results in small-scale evaluations.
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Figure 7: Inference workload redistribution results in large-scale evaluations.

the inference workload redistribution execution is completed, as
shown in Figure. 7c, the inference loss of BIRP decreased by 32.3%
compared to OAEI.

6 RELATEDWORK
Edge DNN inference accelerating. Despite the powerful pattern
recognition capabilities of DNN inference models, they often re-
quire complex tensor operations, and traditional CPU architectures
tend to be time-consuming in processing DNN inference [26–28].
Hardware accelerators with parallel acceleration capabilities are
needed for processing DNN complex tensor operations, often with
multiple Streaming Multiprocessors (SMs). Typical edge accelera-
tors include Jetson Nano [23], Huawei Atlas 200DK [18], Google
Edge TPU [13], and other platforms. After an inference request is
initiated, it will be executed on these edge accelerators. Some DNN
inference methods are specifically designed for accelerating on par-
ticular platforms. For example, the ATC [17] tool is only effective
for Huawei Ascend [18], while TensorRT [23] is only effective for
GPUs. There have been approaches that propose kernel-level infer-
ence workload parallelization techniques [15], as well as methods
for GPU virtualization [6]. However, these methods require the
hardware architecture to have certain special configurations, such
as NV-Link [24] or preemptive scheduling [6]. Compared to these
parallel methods, batch-aware parallel methods only defer certain
inference tasks within their SLO to execute similar types of infer-
ence workloads together, achieving maximum resource utilization
and better generality.

Inference workload redistribution. Inference workload re-
distribution techniques are typically designed to address the issue
of workload imbalance for uncertain edge collaborative systems.
Thai et. al proposed a cloud-edge computing architecture, opti-
mized through a workload and capacity optimization problem [30].

Wang et. al adopts a reinforcement learning approach from the
perspective of each user to decide the inference workload alloca-
tion [33]. Ding et. al proposes potential game-based algorithms with
end-edge-cloud systems for workload redistribution [10]. These
works optimize overall resource utilization from the perspective
of cloud, edge, or end, but do not jointly consider the combined
impact of inference accuracy and inference latency. Jin et. al bal-
ance the tradeoff between inference accuracy and inference latency
by employing different versions of inference models [19]. In addi-
tion, some research [7] focuses on predicting the distribution of
workloads to provide a decision-making basis. But these inference
workload redistribution methods only consider scenarios where
inference is performed serially at the edges.

Online system parameters configuration. In distributed sys-
tems, it is common to treat the system as a black box and configure
various system parameters online. Ernest [31] uses collected histor-
ical hardware parameters on its cloud computing infrastructure to
predict the performance of various tasks running on it. Vizier [12],
on the other hand, targets Google’s cloud service infrastructure and
uses machine learning models to adjust various hardware param-
eters. Morphling [32] attempts to use meta-learning methods to
find the optimal configuration for inference performed on multiple
GPUs. These methods often require pre-setting machine learning
models and preparing large amounts of training data, which is dif-
ficult to achieve in edge collaborative environments. There are also
works [37] that propose using MAB to obtain accurate computation
latency of inference models, but they focus on the execution latency
of a single inference task model.

7 CONCLUSION
To address the issue of inference workload imbalance, BIRP was
the first to introduce a batch-aware parallel inference approach
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that improves system utilization by merging the same inference
requests within the allowed range of the SLO. Based on the real
inference workload trace, we validate the superiority of BIRP with
other SOTA alternatives.
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