8208

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 8, AUGUST 2024

AdaPyramid: Adaptive Pyramid for Accelerating
High-Resolution Object Detection on Edge Devices

Xiaohang Shi
Ning Chen

Abstract—Deep convolutional neural network (NN)-based ob-
ject detectors are not appropriate for straightforward inference
on high-resolution videos at edge devices, as maintaining high
accuracy often brings about prohibitively long latency. Although
existing solutions have attempted to reduce on-device inference
latency by selecting a cheaper configuration (e.g., choosing a more
lightweight NN or scaling a frame to a smaller size before in-
ference) or eliminating a background containing no object, they
often ignore various high-resolution features and fail to optimize
for those videos. We thus present AdaPyramid, a framework to
reduce as much on-device inference latency as possible, especially
for high-resolution videos, while achieving the accuracy demand
approximately. We observe that the cheapest configuration to
achieve the accuracy demand varies significantly across both dif-
ferent frames and different regions in a frame. The underlying
reason is that object features (e.g., the location, size and category of
objects) are more uneven in high-resolution videos, both temporally
and spatially. Moreover, we observe that the object size presents
a prominent hierarchical distribution in high-resolution frames.
AdaPyramid thus partitions each frame hierarchically just like
a pyramid and chooses a content-aware configuration for each
region, which is adapted online based on the feedback. We eval-
uate the performance of AdaPyramid on a public dataset and our
collected real-world videos. The obtained results show that under
comparable accuracy to the state-of-the-art solutions, AdaPyramid
can decrease inference latency by 40 % on average, with up to 2.5 x
speed-up.

Index Terms—Edge computing, neural networks,
detection, online adaptation, video analytics.

object

Manuscript received 3 February 2023; revised 31 October 2023; accepted 12
December 2023. Date of publication 15 December 2023; date of current version 2
July 2024. This work was supported in part by the NSFC under Grants 62202233
and 61832008, in part by the Double Innovation Plan of Jiangsu Province
under Grant JSSCBS20220409, and in part by the Collaborative Innovation
Center of Novel Software Technology and Industrialization. Recommended for
acceptance by H. Seferoglu. (Corresponding author: Sheng Zhang.)

Xiaohang Shi, Sheng Zhang, Ning Chen, Ke Cheng, and Sanglu Lu are
with the State Key Laboratory for Novel Software Technology, Nanjing Uni-
versity, Nanjing, Jiangsu 210023, China (e-mail: xiaohang @smail.nju.edu.cn;
sheng @nju.edu.cn; ningc @smail.nju.edu.cn; kecheng @smail.nju.edu.cn; san-
glu@nju.edu.cn).

Jie Wu is with the Department of Computer and Information Sciences, Temple
University, Philadelphia, PA 19122 USA (e-mail: jiewu@temple.edu).

Yu Liang is with the School of Computer and Electronic Information/School
of Artificial Intelligence, Nanjing Normal University, Nanjing, Jiangsu 210098,
China (e-mail: liangyu@njnu.edu.cn).

Digital Object Identifier 10.1109/TMC.2023.3343448

, Graduate Student Member, IEEE, Sheng Zhang
, Graduate Student Member, IEEE, Ke Cheng

, Senior Member, IEEE, Jie Wu'?| Fellow, IEEE,
, Yu Liang ¥, and Sanglu Lu"”?, Member, IEEE

I. INTRODUCTION

RIVEN by fast-growing computational capability and

data availability, deep convolutional neural network (NN)-
based object detection technologies are developing rapidly, play-
ing a pivotal role in the modern intelligent surveillance systems.
Considering the privacy issue and the limited bandwidth to
accommodate enormous data, videos ingested from the cameras
are often analyzed on edge devices in many scenarios [1], [2],
[31, [4], [5], [6]. However, edge devices are often restricted
in the capacity of computation and storage and thus cannot
match the massive resource demand of today’s object detection
tasks. On one hand, state-of-the-art NN-based models often have
sophisticated structures, requiring massive matrix operations per
inference. They are thus too computation-intensive for edge de-
vices. On the other hand, high-resolution (e.g., 4K, 8K) cameras
are much more pervasive nowadays and they can be bought
at much lower prices [7], [8]. Performing inference on such
high-resolution video frames incurs even more overhead with
prohibitively high latency.

To alleviate the high inference latency with edge devices,
several acceleration solutions [9], [10], [11], [12], [13] have been
proposed. Nonetheless, existing approaches are not sufficient in
two aspects. First, most of them cannot handle high-resolution
videos well. This is because they often ignore the video features
brought by high resolution and thus fail to take advantage of
these features proactively to optimize their systems. Second,
they rarely study how to reduce the on-device inference latency
of online videos with an accuracy guarantee. The underlying
reason is that the accuracy evaluation on the fly is non-trivial
without the ground truth. Although itis widely adopted to choose
the NN that is as accurate as possible to label the frames [14],
[15], this method incurs too heavy an overhead to be practical,
specifically on edge devices. Moreover, we also show in this
paper (Section IV-C1) that it is very hard to estimate inference
accuracy precisely.

Distinctly from prior works, we present AdaPyramid, a frame-
work to reduce as much on-device inference latency as possible,
especially for high-resolution videos, while still achieving the
accuracy demand approximately. To this end, we attempt to
reduce the inference workload by choosing the cheapest con-
figurations under the accuracy demand. Here, a configuration
refers to a particular combination of knob (e.g., resolution,
sampling rate, and NN model) values in a video analytics system
and a configuration is cheaper if it incurs lower latency. We

1536-1233 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2024 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0002-9796-238X
https://orcid.org/0000-0002-6581-6399
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0003-0722-1757
https://orcid.org/0000-0003-0336-6916
https://orcid.org/0000-0002-9251-4337
https://orcid.org/0000-0003-1467-4519
mailto:xiaohang@smail.nju.edu.cn
mailto:sheng@nju.edu.cn
mailto:ningc@smail.nju.edu.cn
mailto:kecheng@smail.nju.edu.cn
mailto:sanglu@nju.edu.cn
mailto:sanglu@nju.edu.cn
mailto:jiewu@temple.edu
mailto:liangyu@njnu.edu.cn

SHI et al.: ADAPYRAMID: ADAPTIVE PYRAMID FOR ACCELERATING HIGH-RESOLUTION OBJECT DETECTION ON EDGE DEVICES

conduct extensive case studies and observe that the cheapest con-
figuration to achieve the accuracy demand varies significantly
across both different frames and different regions in a frame. We
claim that it is a prominent character of high-resolution videos
since high resolution often brings more uneven object features
both temporally and spatially (Section III). We thus adopt a
“partition+adaption” method. Specifically, we partition each
frame into different regions and then choose a content-aware
configuration for each region, which is adapted in an online
manner.

Furthermore, we observe that the object size in frames
presents a hierarchical distribution based on a visual law called
perspective effect, i.e., the objects near the camera look larger
while the ones far away from the camera look smaller. Since
high-resolution videos can cover a larger geographic range,
the size gap between the smallest object in the bottommost
region and the largest one in the topmost region is greater.
This observation brings opportunities for designing our efficient
partition strategy.

In addition to the configuration choice, we also integrate
the background elimination technique into AdaPyramid. Here,
background means the regions containing no object, which are
unnecessary to detect. In the COCO [16] validation set, the
area of background occupies 57% of a frame on average [17].
This technique can thus cut down the inference workload sig-
nificantly. To find the background, we need to obtain object
locations. Additionally, the location, size and category of ob-
jects can also help profile the accuracy of NN models on a
specific region, and this enables good configuration decisions.
Therefore, it is beneficial to perceive the video content to obtain
object features above. In our system, we obtain object features
represented as the width, height and centroid coordinates of the
bounding box based on prediction from previous frames. The
key is to learn the motion of objects, which is the advantage of
object tracking algorithms. For this reason, instead of devising
a prediction method ourselves like previous works [9], [12], we
propose to utilize existing tracking algorithms in the design of
our object feature predictor.

We encountered several key challenges when designing the
AdaPyramid system. First, the frame partition comes before the
configuration choice stage and affects the overall performance
significantly. Despite its importance, the partition strategy is
rarely studied except for the trivial method which partitions
frames uniformly. Although Remix [13] proposes an exhaustive
algorithm, its searching space is too huge to afford even when
it is executed offline. AdaPyramid hence requires a partition
guideline to reduce the searching overhead. However, how a
specific partition plan influences the inference latency is very
subtle. Second, it is non-trivial to choose the cheapest config-
uration under an accuracy demand in an online system. There
exists an incompatible contradiction that the exact accuracy of
a configuration can only be exposed after the actual inference
while it’s impossible to evaluate all the configurations for each
region due to prohibitive latency. Last but not least, we have
to solve two key problems when designing the object feature
predictor: 1) which object tracking algorithms [9], [18], [19],
[20], [21] can be utilized and 2) how to integrate them into

8209

AdaPyramid. We thus make sufficient studies to address the
aforementioned challenges.

First, it is intuitive that the ideal frame partition plan is
highly correlated with the dynamic video content. However,
previous works [13] fail to characterize the content and utilize it
proactively, thus they can only resort to exhaustive methods. The
crucial problem is how inference latency is jointly decided by the
video content and partition plan, after excluding the influence of
configuration choice. Therefore, we make sufficient exploration
addressing this, which is utilized to generate the partition guide-
line. To be more specific, when partitioning horizontally, the
top portion of a frame should be partitioned into thinner regions
than the bottom portion, just like the pyramid. Based on this
guideline, AdaPyramid frees itself from exhaustive work and is
able to give fast and effective partition plans.

Second, AdaPyramid answers how to approach the cheapest
configuration under an accuracy demand in an online video ana-
lytics system. We conduct extensive measurement experiments
and show the difficulty of profiling the detection accuracy of
configurations. To fill the gap between the offline profile and
the actual performance, AdaPyramid takes advantage of the
system’s feedback to make continuous adaptations to the con-
figuration choices. Moreover, it applies a binary search-based
method to enable fast convergence to the ideal choice.

Lastly, we investigate the existing object tracking algorithms
and find that the ones with the typical detection-based tracking
structure are very suitable to AdaPyramid. We develop a general
framework to integrate them into our system and present the
rationale behind it.

Additionally, we are aware of multiple detailed technical
problems. For instance, the unavoidable object omission prob-
lem incurs potential harm to the system, such as accumulated
error. Additionally, AdaPyramid is based on object feature pre-
diction and cannot handle new objects well. Various techniques
are developed accordingly, which greatly improve the overall
performance.

We have implemented AdaPyramid on commercial mobile
platforms (e.g., Nvidia Jetson devices) in Linux as a plug-and-
play extension to the object detection module of typical video
analytics systems (e.g., intelligent surveillance systems).

To sum up, the main contributions of this paper are as follows:

® We propose AdaPyramid, a novel framework to reduce as

much on-device inference latency as possible, especially
for high-resolution videos, while achieving the accuracy
demand approximately.

® We conduct extensive case studies and make various ob-

servations on high-resolution videos, which are utilized to
design techniques in our system. Specifically, the parti-
tion+adaption” design is based on the prominent spatial
and temporal dynamics while the pyramid-like partition
strategy is inspired by the hierarchical object size distribu-
tion in frames.

® We propose a suite of techniques: 1) we develop a novel

tracking-based solution to characterize video content,
which enables the design of other techniques; 2) we reveal
how inference latency is jointly influenced by the video
content and partition plan and develop a pyramid-like

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2024 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

8210

3%3 partition
/Y

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 8, AUGUST 2024

A Config.
. pool

. gzoo
150
[
M % 100
Recall > 0.8 8
e 5 ° S W X W\Wv’\-—
of | Whichisthe | £
I 21 Q 30
spatial'_ih_ealpfs_tfo_nfl_g'_‘_' © 5 ww-}'lu.l‘\.a_

2 10
temporal 0

02 468 024628 02468
x10? X102 %102

EeY
< patrar

(a) Case study setup.

Fig. 1.

Frame IndeX

(b) Case study result.

Case studies for exploring features of high-resolution videos. In (a), each frame is partitioned into 33 grids uniformly. We then perform object detection

on these regions separately with the cheapest configuration (represented with black dots) to achieve the accuracy demand, using Jetson AGX Xavier. The latency
of such cheapest configuration, denoted as the optimal latency, is plotted for each region of all the frames in (b).

partition strategy; 3) we answer how to approach the cheap-
est configuration online with an approximate accuracy
guarantee through a binary search-based method; 4) we
solve some detailed technique problems, which greatly
improve the overall performance.

* We implement our framework on the Nvidia Jetson plat-
form. Evaluation results on PANDA 4K dataset show that
AdaPyramid achieves up to 2.5x speed-up with com-
parable accuracy to the state-of-the-art object detection
solutions.

II. RELATED WORK

Since performing object detection on high-resolution videos
is too computationally intensive for edge devices, many so-
lutions have been proposed to accelerate the inference. Some
of them are hardware-based. For example, various accelerators
such as GPU, FPGA [22] and ASIC [23] are developed with
specialized drivers, boosting the computing resources on edge
devices. In this paper, we place our emphasis on software-
based solutions, which can be broadly classified into three
categories: configuration choice, background elimination and
the “detect+track” framework.

Configuration Choice: Model compression techniques [24],
[25], [26], [27], [28], [29] generate lightweight NNs for in-
ference speed-up. We can thus tune the knobs of videos (e.g.,
decreasing resolution or frame rate) or choose lightweight NNs
to accelerate inference, which can be denoted as choosing
cheaper analytical configurations. Nonetheless, such speed-up
often comes with accuracy loss. This intrinsic latency-accuracy
tradeoff is considered and balanced in many previous works [10],
[301,[31], [32], [33], [34]. Nonetheless, these works are not cus-
tomized for high-resolution videos and thus have much potential
to improve. Remix [13] considers high resolution and adopts a
nonuniform partition method similar to our work. However, its
goal is to improve accuracy with a latency budget. Therefore,
it is not suitable for those applications requiring accuracy guar-
antees. Moreover, Remix is devised based on the premise that
NNs have a fixed input image size for inference, which cannot
completely apply to the latest object detectors [35], [36], [37].
By contrast, our design is inspired by extensive observations of
high-resolution videos. Additionally, Remix assumes that the

video content of different regions is relatively static, and thus
cannot handle videos with very dynamic content.

Background Elimination: Background (i.e., regions contain-
ing no object) of frames requires no effort of inference. There-
fore, the main process of this technique is to locate ROIs (regions
of interest, i.e., the regions which are possible to contain objects)
and then perform inference only on these regions. Various
papers [3], [9], [111, [12], [38], [39], [40] propose different
methods to locate ROIs. For instance, [9] reuses motion vec-
tors of video codecs. [11] uses a traditional optical flow-based
object tracking technique. [41] applies reinforcement learning,
while [39], [42] develop DNN-based methods. Our work is
based on object tracking in general. However, we do not intend
to design a new method like existing works, but to propose
a general framework to utilize existing multi-object tracking
algorithms. In this way, the advantages of the latest algorithms
can be integrated into our system.

“Detect+Track” Framework: We can decrease the average
detection latency by replacing expensive object detectors with
lightweight object trackers for some frames, instead of using
detectors all the time. Many “detect+track™ solutions [9], [43],
[44], [45] are thus proposed where the detector is just applied
every several frames, while the lightweight object tracking (e.g.
lucus kanade methods) is used to give results alternatively in
between. Although the detection latency can be significantly re-
duced, this framework is not suitable for the scenarios with high
accuracy demand. It is very hard to maintain the accuracy since
the prediction accuracy of lightweight object tracking methods
is often limited, and the errors propagate and accumulate before
the next inference of the object detector. Besides, this framework
fails to handle the changes of object appearance, the occurrences
of new objects, and the occlusions of objects well [11], which
performs even worse if such phenomenons appear frequently.
Moreover, this framework cannot be well applied to the sce-
narios with objects moving too fast as well [46]. We do not
adopt this framework and performs NN inference on every
frame to ensure the system performance when high accuracy is
demanded.

Video Content Characterization: Video analytics applications
often focus on the foreground of frames, such as pedestrians and
vehicles. Video content characterization means obtaining the
features (e.g., the location, size and category) of these objects

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2024 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

SHI et al.: ADAPYRAMID: ADAPTIVE PYRAMID FOR ACCELERATING HIGH-RESOLUTION OBJECT DETECTION ON EDGE DEVICES

for the future utilization in system optimization. For example,
EdgeDuet [10] identifies whether a region potentially contains
small objects by using the detection results of the last frame
directly, and then offloads such regions with high compression
levels. Remix [13] obtains the probability distribution of differ-
ent object size levels in a region to predict detection accuracy, by
performing the measurements from historical frames. ELF [12]
develops a attention-based LSTM to predict where the objects
in previous frames may appear in the current frame to estimate
the workload of different regions for parallel offloading and
inference. EAAR [9] reuses motion vectors of video codecs to
predict the regions where objects are likely to appear.

Nonetheless, these works [9], [10], [12], [13] fail to exploit
the potential of motion prediction in advanced object tracking
algorithms [20], [21] for the online accurate characterization of
the comprehensive fine-grained features, influencing the feature-
based optimization. Moreover, they often ignore the object omis-
sion problem during the content characterization (see Section
IV-B3), thus hurting the detection accuracy when background
elimination is incorporated. By contrast, AdaPyramid remedies
the above insufficiency.

III. MOTIVATIONS

In this section, We present the key observations of high-
resolution videos to motivate us in the system design. To explore
this, we conduct the following case studies.

A. Case Study Setup

We use a traffic surveillance video with high resolution from
PANDA 4K dataset,' containing a road with moving pedestrians
and vehicles. The resolution is 3,840 x 2,880 while the frame
rate is 12. For a video, we need to choose the cheapest config-
uration with an accuracy demand anywhere and anytime if we
want to achieve the lowest latency, which can be regarded as the
optimal scheme. We thus make some explorations and observa-
tions from the spatial and temporal angles in this high-resolution
video.

Fig. 1(a) shows the setup illustration. We partition each frame
into 3x3 grids uniformly and perform inference on them re-
spectively to detect pedestrians and vehicles. Detection results
are marked with white bounding boxes. We use a typical edge
device called Jetson AGX Xavier [49] as the inference device
and Pytorch [50] as the inference engine. To obtain the ground
truth of object detection, we use YOLOVS5x as the oracle model
to label the frames due to its nearly SOTA performance, instead
of impractical manual labeling.

In this case study, the configuration is two-dimensional, which
is a combination of NN and scaling ratio. The scaling ratio
denotes the ratio of the width (or height) after scaling to the
width (or height) before scaling. To construct the pool for con-
figuration choice, we select YOLOv5n, YOLOvSs, YOLOv5Sm
and YOLOVS5I as optional NNs, which are four YOLOVS [35]

't is generated by scaling the gigaPixel-level surveillance videos in PANDA
dataset [47], [48] from 26,753 x 15,052 (32,609 x 24,457) to 3,840 x 2,160
(3,840 x 2,880).

8211

variants released officially. From variant v5n to variant v5l, the
detecting capability gets stronger but with higher latency. We
take the scaling ratio from 0.1 to 1 with a stride of 0.1, which
corresponds to 10 different input resolutions. Finally, we get
40 configurations covering various detection capabilities in a
fine-grained way. We then evaluate every configuration in the
pool on every region of video frames. For each one of the total
9 regions, we pick the configurations with a Recall higher than
0.8 and choose the cheapest one among them. We denote the
lowest latency of such cheapest configuration while meeting
the accuracy demand as the optimal latency. For those regions
containing no object, we regard the optimal latency as zero since
they require no detection effort. We repeat this search for all the
frames and plot the optimal latency for each region of all the
frames in Fig. 1(b).

B. Case Study Result

In Fig. 1(b), each sub-figure is plotted for one region in the
corresponding place in Fig. 1(a). We denote the region at the ¢th
row and jth column as region (i, j) (¢, € {1,2,3}). Since no
pedestrian or vehicle appears in regions (1, 3) and (2, 3) all the
time, latency is always zero, indicating that these regions are in
the background and should be eliminated in the inference.

Observation 1: There exist prominent dynamics and un-
evenness in high-resolution videos. In the remaining regions
except (1, 3) and (2, 3), we can observe prominent dynamics
and unevenness. On one hand, latency varies greatly across
different regions. Specifically, the optimal latency of top regions
is higher than that of bottom regions by an order of magnitude.
This indicates that the cheapest configuration to achieve the
accuracy demand varies significantly across different regions
in each frame.

On the one hand, latency fluctuates remarkably in each spe-
cific region. For instance, in the region (1, 1), the highest optimal
latency during inference is more than 10 times the lowest. This
indicates that the cheapest configuration to achieve the accuracy
demand varies significantly across the same regions of different
frames.

Therefore, if we adopt configurations as the unit of a whole
frame, much more latency would be incurred to maintain the
accuracy of the top regions. This motivates us to adopt the par-
tition way and choose configurations for each one of the regions
separately. Moreover, if we adopt a fixed configuration in all
the frames, we would undertake more than 10 times the overall
latency in the region (1, 1) to guarantee inference accuracy. This
motivates us to adapt configurations over the frames to reach
the optimum. Hence, we should adopt a ”partition+adaption”
design.

Observation 2: Object size distributes hierarchically in
high-resolution frames. Object size decreases significantly
from bottom to top, especially in high-resolution frames, pre-
senting a hierarchical distribution. This trend brings opportuni-
ties to the design of a more sophisticated partition strategy. In
this paper, such property inspires us to design the hierarchical
pyramid-like partition strategy instead of the existing exhaustive
search methods.

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2024 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

8212

———"
I@ ~. ||| High-Res Featuregy| Object | Pyramid-like
Input Predictor— | features Partitioner @
Object Partition Object
detection decision features
3 Inference :
result .
Executor ik Configuration
Basic Config. & Partition Adapter (4]
Detector decisions @
New-object Inference | Result @ | Guide || conp ol
Detector result | evaluator | Adapter [L_ »

Fig. 2. AdaPyramid system overview.

Discussion: To explain those observations above, we argue
that they are prominent properties, especially in high-resolution
videos. According to the perspective effect, the objects near the
camera look larger while the ones far away from the camera
look smaller. Since high-resolution videos often cover a larger
geographic range, the size gap between the smallest and largest
objects is greater. Therefore, the object size decreases greatly
from bottom to top, presenting strong unevenness and a hier-
archical distribution. From the temporal aspect, the object size
fluctuates in a larger range, resulting in remarkable dynamics in
the time dimension. We also show the strong correlation between
object size and the cheapest configuration to maintain accuracy
later. That answers why the cheapest configuration to achieve
the accuracy demand varies significantly both temporally and
spatially.

IV. SYSTEM DESIGN
A. Overview

AdaPyramid aims to reduce as much on-device inference
latency as possible especially for high-resolution videos, while
achieving the accuracy demand approximately. To realize this
goal, it adopts a partition+adaption” design. Specifically, it first
partitions the frame into several regions. It then eliminates the
background and chooses the cheapest configuration to maintain
accuracy for each region. Such workflow is repeated and adapted
for each coming frame. Fig. 2 shows the system design of
AdaPyramid while Fig. 3 is an illustration of the processing
pipeline for a frame.

Feature Predictor @ (Section 1V-B): AdaPyramid first cap-
tures a high-resolution frame from the camera. Feature predictor
then predicts the features of objects in this frame, which is
represented as the width, height and centroid coordinates. This
predictor proposes a general framework for utilizing the motion
prediction workflow of existing multi-object trackers. In the end,
features are submitted to pyramid-like partitioner ©.

Pyramid-Like Partitioner ® (Section IV-D): This module
decides how to partition a frame into several regions. It follows
the guideline that the top portion of a frame should be partitioned
into thinner regions than the bottom. It then eliminates the back-
ground of each region. The final shape is like a pyramid. Besides,
the object features are further submitted to the configuration
adapter .

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 8, AUGUST 2024

b

. £
(c) Config. choice (d) Inference result

Fig.3. Illustration of the processing pipeline for a frame in AdaPyramid. In (a),
object features marked with blue bounding boxes, are predicted for the current
frame. Next, (b), the partition plan is generated by the pyramid-like partitioner.
The partitioned regions are marked with white bounding boxes. After that, in
(c), the configuration adapter decides the configuration for each region, where
their detection capabilities are marked with different colors. Finally, the per-
region and new-object detection results are merged to produce the whole-frame
inference result in (d), which is marked with yellow bounding boxes.

Configuration Adapter @ (Section IV-C): This module decides
the cheapest configurations with an accuracy demand for each
region across the frames. Starting from a conservative config-
uration obtained with the offline profile and object features, it
continues to search based on the online feedback until the desired
one is approached. Then the configuration choice and partition
plan are submitted to the basic executor @ for inference.

New-Object Detector ® (Section IV-E): This module aims to
detect new objects in the current frame, since the prediction-
based detection above cannot handle objects never seen before.
It is based on the observation that new objects just appear in
specific regions of a surveillance video. Therefore, the inference
is just performed on these regions, greatly reducing the overhead.

Result Merging and Feedback: Results from both per-region
detections in the basic executor @ and new-object detection in
the new-object detector @ are merged finally to produce the
whole-frame result (Fig. 3(d)). This is then used to update track-
ers of feature predictor @ and guiding configuration adapter @.

B. Object Feature Prediction

1) Why AdaPyramid Adopts Object-Level Video Content
Characterization?: Previous works [51] have shown that the
performance of video analytics systems is sensitive to different
features. Therefore, the characterization of video content may
guide the design and optimization of these systems, which has
shown up in the latest works [10], [12], [13], [S1], serving as
their foundation of performance boosting.

Instead of obtaining the probability distribution of different
object size levels or the possible regions where objects may
appear in some existing works [9], [10], [13], AdaPyramid aims
to predict the features for every single object, called object-level
video content characterization. This form contains fine-grained
features of each object and is more informative intuitively.
We adopt this manner since it contains extensive information,
supporting the design of system techniques better. Moreover, it

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2024 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

SHI et al.: ADAPYRAMID: ADAPTIVE PYRAMID FOR ACCELERATING HIGH-RESOLUTION OBJECT DETECTION ON EDGE DEVICES

Update | Tracking ..
Trackers’ | Resurt [T | Association
A
Trackers ,| Predicting Predicted
Alg. features
Current Object Actual
frame Detector features
Fig. 4. Detector-based tracking structure of a typical multi-object tracking
algorithm.
Update Trackers ..
; Association
v
Trackers > Preillctmg Predicted
£ j— features
Current N Our Actual
frame system features
Fig.5. Framework showing how to integrate a multi-object tracking algorithm

into AdaPyramid.

is predicted per frame to keep the freshness of features and can
thus handle videos with dynamic content.

2) How to Utilize the Power of Existing Object Tracking
Algorithms?: To support configuration choice and background
elimination techniques, AdaPyramid obtains features of objects
in the current frame represented as the width, height and centroid
coordinates of the bounding box. This is based on motion pre-
diction of such objects in previous frames, which is well studied
in existing object tracking algorithms [9], [18], [19], [20], [21].
Therefore, AdaPyramid utilizes their power to predict object
features.

The goal of object tracking is to figure out whether the objects
in the current frame are the same objects in the last frame,
which requires associating the objects in these adjacent frames.
We investigate the existing multi-object tracking algorithms
sufficiently and find that those with a detection-based tracking
structure (Fig. 4) fit AdaPyramid very well. Specifically, such
algorithms first apply the object detector to perform inference
on each frame, and then associate the detection results between
adjacent frames to achieve the object tracking goal. To achieve
the association, the tracker instances apply the specialized pre-
dicting algorithm (e.g., Kalman Filter) to obtain the predicted
object features in the current frame. The prediction is based
on the accumulated detection results of previous frames. The
predicted object features are then associated with the actual
detection results, obtained by actually performing inference
on the current frame with the object detector, to generate the
tracking result (e.g., object features with ID). In this process,
the accumulated motion information in the tracker instances is
also updated, given the association results.

Since the object detector module exists in both AdaPyramid
and those tracking algorithms, it is possible to reuse the module
for integration. Additionally, we need to decouple the predicting
workflow (i.e., generating predicted features with trackers based
on the predicting algorithm) out of the tracking structure to
obtain object features in AdaPyramid. Fig. 5 proposes a general

8213

framework to integrate a tracking algorithm into AdaPyramid.
Although different tracking algorithms have various concrete
implementations and sometimes the modules are mixed up, they
are separated in the logical aspect. We can thus easily perform
the decoupling and integration. In Fig. 5, the predicted object
features are input into AdaPyramid, which are utilized by our
system to perform optimized object detection on the current
frame for the actual object features. Finally, the actual features
and predicted features are associated, and the association result
is then utilized to update the trackers.

3) How to Handle the Omitted Objects Hurting the System
Performance?: Problem Proposition: In the process of perform-
ing object detection on a video, objects are often omitted in the
results. We present two reasons to account for this phenomenon.
On one hand, the analytical configuration is too cheap to detect
some objects that are very small or partially occluded. On the
other hand, some objects are fully occluded by some obstacle
when moving and are thus impossible to be detected. Since the
feature prediction of objects is based on their locations in the
previous frames, such omissions bring challenges to the correct
prediction of the current frame. This problem is non-trivial to
handle because it is hard to tell whether an object is omitted or
just leaves the view field permanently.

Common practices [9], [12] often ignore this object omission
problem, and make a prediction just for the objects which
are successfully detected in the last frame. Specifically, if the
predicted location of an object fails to be associated with that of a
factually detected object, the corresponding tracker is discarded.
This means that if an object is omitted in the last detection, it
will also disappear in the feature prediction for the current frame.
This method is intuitive but cannot be applied to AdaPyramid,
which contains configuration choice and background elimina-
tion as two main components. First, the predicted object features
are incomplete for this simple discarding mechanism. Second,
even if the omitted objects appear again in the following frames,
they are identified as brand-new ones. Without the accumulated
information in the trackers, their motion cannot be predicted
very precisely. Since the configuration choice is guided by the
predicted object features, it may thus be influenced due to the
incomplete and inaccurate predicting result.

Even worse, the background elimination is highly dependent
on the feature prediction since it aims to remove as large regions
containing no object as possible. In this case, if an object omitted
in the last detection fails to be predicted for the current frame, the
region containing this object may be wrongly skipped during the
inference. It is thus omitted again in the current detection. In this
way, it may be missed in all the following frames. Fig. 6 provides
an example. In Fig. 6(a), target objects in the yellow bounding
box can be detected initially and are then fully occluded by some
trees in Fig. 6(b). When they return to the view field (marked
with a red bounding box) in Fig. 6(c), they fail to be covered by
the actual detection region (marked with a green bounding box)
and are thus omitted. Here, the actual detection region refers to
the regions which are left after the background elimination and
are actually detected. Such irreversible, permanent omissions of
objects in the detection may be accumulated as time goes on,
incurring significant accuracy drop.

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2024 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

8214

lwa;get bbjects

Ad
I Act.ual Detection Region

(@)

Fig. 6. Illustration for the potential problem with object occlusions. (a)—(c)
presents the change of the actual detection region before, during and after the
occlusion occurs.

Problem Solving: To alleviate this problem, we propose to
reserve the trackers if the predicted object locations generated
by them fail to be associated with the inference result. Such
trackers continue to generate predictions in the following frames
and are finally discarded only if the number of failing time in
the associations exceed a threshold p. Through the reservation
method, we provide a second chance for those trackers and
expect them to succeed in the association when handling the
following p frames. We can thus filter out most of the omit-
ted objects and separate them from the ones leaving the view
field permanently. As a consequence, the accuracy is improved
significantly, particularly due to the sufficient mitigation of the
accumulated object omission problem.

Although a high threshold p can help the omitted objects get
more chances to be reassociated, this does not mean p should not
be as high as possible. If the trackers corresponding to objects out
of the view field are reserved for too many frames, the number of
wrongly predicted features also increases. When eliminating the
background, some regions which should have been eliminated
are reserved since they contain such wrongly predicted features.
Consequently, it hurts the inference latency. We thus conduct a
tradeoff study in Section V-C to guide us to set p appropriately.

Moreover, the accumulated errors can be further eliminated by
periodically applying the most expensive configuration for infer-
ence, providing the calibration signals in this close-loop system.
Howeyver, additional inference overhead is also introduced. Since
the accumulated errors have been suppressed effectively, vali-
dated in Fig. 12(a), we leave this calibration study as future work.
Moreover, we summarize why AdaPyramid works well without
calibration signals as follows: 1) All the frames are put into
actual inference ultimately even though predictive information
is referred to. 2) Given the motion pattern rule existing in the
vast majority of scenarios, the sophisticated object tracking
technique is leveraged to support accurate feature prediction. 3)
The proposed tracker reserving design above further provides
the fault-tolerance effectively.

4) Cold Start: Accurate prediction requires there being
enough motion information accumulated in the tracker in-
stances. However, the tracker instances are newly created when
the system starts to capture frames, and thus cannot predict ob-
jectfeatures accurately for the detection workflow. To handle this
cold start problem, in AdaPyramid, we apply the most expensive
configuration on the whole frame for the first several seconds. In
this way, the trackers are updated with the approximate ground

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 8, AUGUST 2024

2000+ YOLOV5n
YOLOvV5s
YOLOvV5m

YOLOVS5I

5001

e+ o m

5001

Latency (ms)
=R
o
o
o

B

0 2 4 6 8
Input frame size (Pixels) %108

Fig. 7. latency of YOLOVS series object detectors with different input frame
sizes (number of pixels).

truth for a sufficient number of times, and consequently can
make accurate predictions then.

C. Configuration Adaptation

With an accuracy demand, this module aims to choose the
cheapest configuration from a pool when performing inference
on a specific region. Obviously, the foundation of making
choices is to evaluate how a configuration performs on this
region, which is called a profile. Although conducting the profile
directly on the current frame is the most accurate method, its
overhead is prohibitive since we have to make the choices online.
Therefore, common practices [30], [31] often rely on offline
profiles for the configurations. However, they rarely expose the
gap between the offline profile and the actual performance. We
then conduct extensive measurements on PANDA 4K dataset
with Jetson AGX Xavier to evaluate the difficulty of obtaining
a precise offline profile for both inference latency and accuracy.
In the measurements, we use YOLOvV5n, YOLOvSs, YOLOvSm
and YOLOVSI as the candidate NNs, while YOLOvS5x is used
for the labeling. After that, we give our configuration adaptation
algorithm inspired by the evaluation result.

1) Why is the Offline Profile Not Sufficient for Configu-
ration Choice in an Online Video Analytics System?: Mea-
surement 1: Inference latency can be estimated precisely.
We scale each frame to different sizes and measure the average
inference latency on every frame size with candidate NNs. The
scaling ratio ranges from 0.1 to 1 with a stride of 0.1.

We observe that the latency is almost consistent across dif-
ferent frames if they have the same size. This is rational since
a typical NN performs the same operations on frames if the
size of the input feature map is determined, regardless of the
content. Furthermore, Fig. 7 shows that the latency of a NN
increases linearly with the input size, denoting the number of
pixels. This is because the time overhead of the main compo-
nents in NNs such as convolution and pooling layers is linearly
related to the size of the input feature map. Besides, some other
components contribute relatively fixed overhead, such as some
initialization operations and the classification network in Faster
R-CNN. Therefore, the inference latency L(-) of a network n
can be estimated precisely by fitting a linear expression with the
measurement on a specific GPU, formulated as:

L(n,S) = k(n)S + b(n) (D)

Here, S is input frame size while k(n) and b(n) are the coeffi-
cients related to network n.

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2024 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

SHI et al.: ADAPYRAMID: ADAPTIVE PYRAMID FOR ACCELERATING HIGH-RESOLUTION OBJECT DETECTION ON EDGE DEVICES

1.0 1.0 —
0.9 ’
—0.8 __ 08 %?TTT
© 0.7 © 0.6
Vo6 —e— YOLOV5n (%)
g 05 —+— YOLOVSs &-’ 0.4
0.4 —¥— YOLOv5m 0.2
0.3 —<+— YOLOVSI
12.345.678910 12345678910
Object Size Level Object Size Level
(a) (b)
Fig. 8. Accuracy of NNs when detecting pedestrians with different object

size levels on PANDA 4K dataset. (a) shows the average accuracy of NNs
while (b) further shows the YOLOVSs accuracy distribution on every object size
level.

TABLE 1
RANGES OF DIFFERENT OBJECT SIZE LEVELS IN PIXELS, E.G., LEVEL 1
RANGES FROM 02 TO 242 PIXELS

Size Level 1 2 3 4 5 6 7
Min Size 0% | 242 | 322 | 40% | 482 | 562 | 647
Max Size | 247 | 322 | 407 | 482 | 562 | 642 | 722

Measurement 2: Inference accuracy cannot be estimated
precisely. We have obtained object features from the predictor
(Section IV-B) as the content characterization. Existing stud-
ies [10], [12], [13], [51] have proved that the accuracy profile is
sensitive to object size and category. We thus measure the infer-
ence accuracy of candidate NNs on different sizes of pedestrians
and show the results in Fig. 8. Object size is divided into multiple
levels whose ranges are presented in Table I.

Fig. 8(a) shows that accuracy decreases as object size gets
smaller with a specific NN. Although we can profile the average
accuracy with extensive measurements given a size level and
a category, this doesn’t mean accuracy can be precisely pre-
dicted. Fig. 8(b) shows that even with object size and category
determined, accuracy still varies significantly across different
frames, especially when object size is very small. For instance,
accuracy ranges from 0O to 0.6 at size level 1, which is almost
impossible to predict. This is because various factors, such as
lightness, object occlusion and even whether a region is focused
well, also affect the inference accuracy in addition to the factors
we have considered already. Although introducing more factors
is beneficial for precise prediction, it is still too complicated to
construct a comprehensive model to characterize how accuracy
is affected by them.

To summarize, it is not adequate to choose configuration just
based on the offline profile due to the difficulty of accuracy esti-
mation. We then present how to complement such insufficiency
with the configuration adapter in AdaPyramid.

2) Configuration Pool @: Before giving the concrete design
of configuration adapter, we first show how to construct the
configuration pool. In AdaPyramid, the configuration is a com-
bination of NN and scaling ratio. We denote the NN set as N
and the scaling ratio set as R. The configuration pool P can be
constructed as N x R (X is the Cartesian product). Although the
configuration is two-dimensional here, we must mention that it
can be easily extended to the multi-dimensional version.

Here, NN set N can be customized as the case may be, but it
should better be able to cover every level of detecting capability.
To construct R, we first denote the size (i.e., number of pixels) of

8215

the smallest object in the obtained features of a specific region
as s. We then give the scaling ratio set R as {r1,7r2,73, -}
where r; = /% and r; < 1. Here s; = (“£2)? pixels if object
size at level 7 ranges from a? to b? pixels (e.g., s; = 122 pixels,
59 = 282 pixels).

For a specific configuration p = (n,r;), we can offline esti-
mate how it will perform on a specific region. We denote the
size of this region as S. After the scaling operation, region size
contracts to size ;2.5 while the smallest object size contracts to
ri%2s = s;, which is at the range of level i. According to Section
IV-C1, inference latency can be precisely estimated as

L(n,r;%S) = k(n)r;%S + b(n).)

Since k(n)r;? indicates how much faster L(-) increases with .S,
it can be explained as the price of configuration p. To estimate
the inference accuracy, we measure the average accuracy with
Recall for each NN on different size levels of objects based
on public datasets (COCO [16] dataset in our implementation)
and denote the measured accuracy for level 5 and network n as
a(n, 7). For example, according to this measurement, accuracy
on the smallest object of the region above can be estimated as
a(n,i). We note that the estimated accuracy may not be very
precise, but it can still be used for guidance.

3) Configuration Adapter @: We now give the design of
configuration adapter in AdaPyramid. We attempt to search
for the cheapest configuration with an accuracy demand for a
specific region, beginning from the one guaranteed to achieve
this accuracy goal, denoted as the conservative configuration.
We adopt this search direction from the expensive ones to the
cheap ones out of particular consideration. We have learned
from Section IV-B3 that object omissions in one frame may
introduce accumulated permanent omissions in the following
frames. Therefore, we propose to keep the configurations applied
in the search process to be more expensive than the desired result
and this guides us to design our search direction.

Conservative Start: We first propose how to choose the con-
servative configuration. Although the most expensive one in pool
P can meet the accuracy demand, the process of searching is
very time-consuming since the distance between the starting
configuration and the result can be very long. To address this
challenge, we can approximately regard the measured Recall of
a network for a specific size level of objects as the probability of
being detected. Therefore, although we have learned from Sec-
tion I'V-C1 thatinference accuracy cannot be estimated precisely,
we can still guarantee that a specific size level of objects can be
detected with high probability by setting a very strict accuracy
demand. Since the smallest object is normally nearly the most
difficult to detect, we choose the conservative configuration ac-
cording to this object in order to guarantee the accuracy demand.
Specifically, we choose the cheapest configuration from pool P
whose estimated accuracy on the smallest object is higher than
a strict threshold v (0.95 in AdaPyramid) as the conservative
configuration. Here, the smallest object size is provided by the
predicted object features of the given region. We argue that such
a setting of the conservative configuration can not only guarantee
accuracy, but also reduce much search overhead by utilizing the
predicted object features.

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2024 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

8216

Starting from the conservative configuration, there still exists
much potential for reducing latency by searching for cheaper
configurations. For instance, in Fig. 8(a), YOLOVS5I achieves
a Recall of 0.95 on level 5 objects but can still achieve 0.83
on level 2 objects. This indicates that even if we contract a
region with level 5 objects to a quarter of its original size, we
still have a high chance of detecting the objects in it, since an
object at level 5 is approximately 4 times larger than an object
at level 2. According to (1), scaling a region to a quarter of its
original size means around 75% latency reduction. We then show
the searching algorithm in AdaPyramid, which is a process of
continuous adaptation across the frames.

Continuous Adaptation: AdaPyramid searches the desired
configuration by tuning the accuracy threshold +. It then chooses
the cheapest configuration whose offline estimated accuracy on
the smallest object is higher than ~. Here, the threshold v for
the smallest object is just a knob for searching configurations
with various capabilities. Additionally, we argue that although
the estimated accuracy may not be very precise, it can reflect
the relative relationship between the capabilities of different
configurations. Therefore, a high y can filter out relatively strong
configurations, and vice versa. To realize fast searching, we
develop a binary search-based method, which alternates between
the proactive and passive stages.

AdaPyramid first enters the proactive stage. It decreases ~y
for every coming frame by a stride k set to ky initially. If no
remarkable accuracy loss occurs, it continues with the same
stride. Otherwise, ~ is first recovered to the threshold of the
last frame. After that, it resumes to search with half the initial
stride, i.e., % Each time the searched configuration shows
remarkable accuracy loss, v is first recovered and then resumes
to be decreased with half the previous stride. When & decreases
below a very low value (0.01 in AdaPyramid), we consider that
the configuration is very close to our desired one and we switch
to the passive stage.

In the passive stage, we first keep the configuration searched in
the previous proactive stage in the next second, assuming video
content shows no significant change in such a short interval.
However, if remarkable accuracy loss occurs in this process,
AdaPyramid will increase the accuracy demand continuously
by a stride of ks until such a loss is eliminated. After that, it
enters the proactive stage whose process is similar to the first
one but with an initial stride of k. Here ko is smaller than k1,
as there is no need for drastic configuration adjustment after
the first proactive stage. We set k; to 0.2 and ko to 0.05 in
our implementation and the configuration can converge to the
desired one within 12 frames in most cases, which is less than
1 s for videos with a frame rate of 12 (see Section V-D).

It should be noted that if the searched configuration is not
strong enough, object omission problem may be incurred along
with the accumulated error. Fortunately, our predictor with the
tracker reserving design (Section IV-B3) can provide fault-
tolerance for a relatively aggressive searching.

4) Result Evaluator @: Since ground truth is unavailable
when performing inference online, we cannot obtain the accu-
racy exactly. It is thus non-trivial to tell whether a searched
configuration shows remarkable accuracy loss. In AdaPyramid,

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 8, AUGUST 2024

we approximately use the predicted object features as the ground
truth since motion prediction for a short interval is accurate
enough to serve as the evaluation labels. Besides, the fault-
tolerant tracker reserving design (Section IV-B3) further ensures
the effectiveness of this approximation. Experiments (Section
V-C) also show that the accuracy evaluated with our approximate
ground truth is close to the optimum. We consider a searched
configuration as having shown remarkable accuracy loss if the
evaluated accuracy is lower than a threshold a, namely the
accuracy demand set by the users, including end users, service
providers and application developers. Given the general impor-
tance of setting reasonable service quality guarantee (such as
an accuracy demand, or a delay constraint), AdaPyramid allows
users to achieve better experience by flexibly adjusting accuracy
demands in specific applications, especially for providers and
developers.

Therefore, although it is nearly impossible to obtain exact
accuracy in practice, we can tune « to approximately satisfy our
accuracy demand. Additionally, we should not set « to be very
low, since it incurs significant object omissions in the current
frame, which may introduce accumulated permanent omissions
in the following frames (see Section IV-B3).

D. Pyramid-Like Partition

Frame partition comes before the configuration choice above,
and determines the ceiling performance of configuration adap-
tation. Here, the ceiling performance means the lowest latency
the system can achieve by choosing the cheapest configurations
with an accuracy demand for each partitioned region. It is thus
a very critical component.

Before presenting our partition design, a question must be
answered: should partition plan be updated dynamically? Since
the video content varies across frames, we should better update
the partition plan for each coming frame. However, this strat-
egy is not suitable for AdaPyramid. On one hand, making an
update per frame incurs additional time overhead for this online
system, hurting the overall performance. On the other hand, the
configuration adaptation before is designed specifically for a
fixed region. If the partition plan is updated very frequently,
there isn’t enough time for the configuration to converge to
the desired version. Consequently, AdaPyramid adopts a fixed
partition plan. We then provide our partition design.

1) Guideline of Design: To guide the design, we propose that
the key is to expose how inference latency is jointly decided by
the video content and partition plan. However, the underlying
relationship is very subtle and is rarely studied. Therefore, We
conduct sufficient exploration of it here. In short, we utilize the
hierarchical object size distribution in frames and develop an
efficient partition strategy.

To control variables, we put the exploration under the fixed
partition granularity. Here, partition granularity is a two-tuple
denoted as (t,,tp), where ¢, and ¢, denote how many times
the frame is partitioned vertically and horizontally respectively.
For example, (0, 2) means partitioning a frame into regions with
one column and three rows. Additionally, we assume that the
cheapest configurations with an accuracy demand are chosen

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2024 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

SHI et al.: ADAPYRAMID: ADAPTIVE PYRAMID FOR ACCELERATING HIGH-RESOLUTION OBJECT DETECTION ON EDGE DEVICES

after the partitioning. We make this assumption to exclude the
interruption of configuration choice on system performance.

We define resource waste for a region as the unnecessary
latency generated by overly expensive configuration for larger
objects, which is chosen to take care of the smaller ones.
Specifically, we denote the cheapest configurations with the
accuracy demand chosen for the smallest and largest objects
as p1 = (ny,71) and pa = (n2,72), and obtain resource waste
Ras L(ny,r1) — L(ng, r2). We argue that by reducing as much
resource waste as possible, the goal of reducing as much latency
as possible is also achieved.

For further analysis, we denote the size of a given region as
S. According to (1),

L(nl,rl) = k‘(’l’Ll)T12S + b(nl) 3)

We then denote the sizes of the smallest and largest objects in it
as s1 and so respectively, and introduce p3 = (ny, \/s1/$271),
which means scaling the region with a ratio of \/s1/s2r1 and
applies network n4. From another point of view, ps can also be
explained as scaling the region with a ratio of \/s1/s2, which
contracts the largest object from the size of s, to s1, and then
applies configuration p; = (ng,71). Since configuration p; on
objects with size s; can achieve the accuracy demand, configu-
ration p3 on objects with size so can also achieve the accuracy
demand. Considering that py is the cheapest configuration to
achieve the accuracy demand on objects with size s, the latency
of ps is not higher than that of ps, i.e.,

L(na,r2) < L(n1,/s1/s2m1)
= k(n)(\/31/5271)°S + b(ny)

= k(n1)ri28 - zi +b(ny). (4)
2

Finally,
R = L(ny,r1) — L(na,r2)
> L(n1,m1) — Ly, v/s1/5271)
- <1 - sl) k(n1)r128.)

52

(5) gives a lower bound of resource waste on a specific region.
This implies that for the regions with the same width and height
(same size S, of course), more resource waste is incurred in the
top regions.

To explain this conclusion, we first present a visual law called
perspective effect. It tells us that objects on top regions look
larger, and vice versa. Moreover, for a particular category of
objects, its visible height h(-) and width w(+) is linearly related
to its centroid position on the vertical axis, denoted as 3,y [13].
Here, the direction of the vertical axis is from the top of the
frame to the bottom. Therefore, the width of an object can be
estimated as

w(yobj) = PwYobj + Gu- (6)

8217

Here, p,, and g, are the coefficients, which can be fitted with
the frames collected from this specific camera. The height of the
object can be estimated in the same way.

Now, on one hand, top regions contain smaller objects applied
with expensive configurations, indicating that k(n)r;? is larger
in top regions. On the other hand, in regions with the same
height .., the width difference of the largest and smallest objects
can be estimated as p,,y,-, which is irrelevant with objects. This
means that the absolute width difference between the largest and
smallest objects is the same across regions. That is to say, the
relative width ratio between the largest and smallest objects is
larger in top regions as the average object width is smaller there,
and similarly for the relative height ratio, indicating that Z—; is
smaller there. We can then obtain that resource waste R is larger
in top regions. This inspires us to partition the top portion of a
frame into thinner regions than the bottom, whose shape is like
a pyramid.

2) Design of Pyramid-Like Partitioner ©: Based on the
guideline that the top portion of a frame should be partitioned
into thinner regions than the bottom, we present the design
of our partition algorithm. Since the object size varies mainly
in the vertical direction, AdaPyramid adopts the non-uniform
strategy only when partitioning horizontally. When partitioning
vertically, it partitions uniformly as there is no remarkable
hierarchical object size variance in the horizontal direction.

Specifically, to partition horizontally, we let the relative width
(or height) ratio between the smallest and largest objects be
the same across different regions. We denote this ratio as f3.
Following the notations above and (6), for a region ranging from
Yup 10 Ydown vertically, the width of the smallest and largest
objects can be estimated as w(yy,) and w(Ygown). Therefore,

WWYup) _ Pwlup + Gu
w(ydown) PwYdown + quw

p= (N

Since we plan to partition horizontally for ¢;, times, we denote
the t;, partition positions on the vertical axis from top to down

as Y1, Y2, - - - » Y¢, - According to the partition algorithm,
WO _wln) _wlne) _wle) g o
w(y) w(y2) w(yt,) w(H)

Here, H denotes the height of the frame, while w(0) and w(H)
are the estimated width of the smallest and largest objects in the
frame. Thereby,
w(0) = T w(H).)
1
Consequently, 8 can be computed as ;”((2)) “n*1 In turn, we can
obtain the nth partition position on the vertical axis. Specifically,
w(0) = f"w(yy). Then, according to (6), y,, can be computed
g w(0)/B"~qw
We allnéuo compare our algorithm with the uniform strategy to
evaluate its effectiveness. This evaluation is conducted on the
traffic video in Section III. The granularity is set to be (0, 2) to
exclude the interruption of vertical partition, which is the same
in both strategies. Additionally, the cheapest configurations to
achieve the accuracy demand are chosen for each region of
frames by searching exhaustively to exclude the interruption

a

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2024 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

8218

w0 =—— Uniform method
§800 = Pyramid-like method
5\600
< 400
2200
@©
-1 0
0 100 200 300 400 500 600 700 800
Frame Index
Fig. 9. Pyramid-like partition is better than uniform partition in terms of

latency.

of configuration choice. Finally, the total detection latency for
every frame is plotted in Fig. 9. We can see that our pyramid-like
algorithm realizes lower latency on almost all the frames.

To explain this effectiveness, for the top regions applied
with expensive configurations indicating larger k(n)ry2, our
algorithm achieves smaller (1 — z—i)S and thus prevents them
from encumbering the overall latency (see (5)). Specifically,
since we let the relative width (or height) ratio between the
smallest and largest objects be the same across different regions,
z—; is the same as well. Moreover, the top regions are thinner,
and thus have smaller size S. Consequently, this design follows
the guideline above and gives the expected performance.

3) How to Determine the Partition Granularity?: We have
presented the partition algorithm with fixed partition granularity.
So, how do we determine the granularity? Intuitively, a frame
should be partitioned as finely as possible. In this case, the object
size is very similar in each region, indicating little resource
waste based on (5). However, a partition that is too finely
grained may slice many objects into pieces, incurring significant
accuracy loss. Therefore, an appropriate partition granularity
should handle this tradeoff carefully.

AdaPyramid determines granularity by evaluating different
choices at the bootstrap stage. Specifically, we obtain the
converged inference latency for each choice. Remember that
configuration adapter enables fast convergence, we thus leave
very little time (1 s in AdaPramid) for the evaluation of each
choice. We observe in experiments that when ¢, or ¢}, exceeds
2, AdaPyramid suffers significant accuracy loss in most videos.
Such loss in turn forces more expensive configuration to meet the
accuracy demand, thus leading to much higher latency. Based on
this observation, we just evaluate a limited amount of 9 choices
whose t,, and ¢;, range from O to 2. Therefore, the time cost for
determining partition granularity is limited.

4) Background Elimination: After determining the partition
plan, AdaPyramid eliminates the background for each region.
Remember that we have obtained the predicted features of ob-
jects, represented as the width, height and centroid coordinates of
the bounding box. According to the features, we first assign each
of them to the region whose overlap with the bounding box is the
largest. We then adjust the boundaries of each region adaptively
to exactly cover all the objects assigned to it. Additionally, some
padding is reserved to handle the prediction deviation [12].
Fig. 10 shows an illustration. Note that this adjustment may
introduce overlap between neighboring regions. Thereby, the
objects in overlapping areas may be detected repeatedly. To

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 8, AUGUST 2024

[m Objects

Background
elimination

i

Background

Fig.10. Example of background elimination. The left sub-figure illustrates the
original partitioned region while the right sub-figure is the result of background
elimination. Padding is marked as a white band, which is added to make it
tolerant for prediction deviation.

handle this problem, we use the non-maximum suppression
(NMS) technique to remove duplicated bounding boxes when
combining the detection results of regions.

5) Discussion: AdaPyramid performs the pyramid-like par-
tition by utilizing the offline profiled linear relationship (see (6))
based on perspective effect. We should note that this profiled
relationship may not exactly apply to every object in the frame,
especially in complicated scenes. For instance, in a shopping
mall scene with multiple floors, the relationship profiled for
objects on the same floor may not apply to the objects on
different floors. However, this profile can still provide a good
statistical result and experiments (see Fig. 16) show that the
performance gain based on it is considerable. Besides, a more
sophisticated partition strategy requires further understanding of
the semantics in the frame, which may inevitably generate more
system overhead and impractical for an online object detection
system like AdaPyramid.

E. New-Object Detection

In previous sections, the designing of the partition and config-
uration choice techniques is based on predicted object features.
However, this prediction cannot handle new objects never seen
before. Existing solutions often seek to locate them in the whole
frame. For example, some works [10], [12] conduct NN-based
detection for new objects. Although they have proposed to com-
press the frame (e.g., scaling to a lower resolution, or applying a
lower compression quality) to reduce detection overhead, such
reduction is often limited if there needs to be a guarantee that new
objects should be located relatively accurately, especially when
handling objects of very small sizes. In this case, the time cost
is not efficient to improve the accuracy brought by new-object
detection.

New-Object Detector®: Fortunately, surveillance cameras are
usually stationary in a fixed angle and position. We thus observe
that new objects can just appear in some specific regions of
a frame, bringing the chance of greatly reducing computation
overhead by removing the regions in which it is impossible for
new objects to appear.

Since the regions in which it is impossible for new objects to
occur are camera-specific, we do the marking for each camera in
the offline stage. It is thus a one-time effort. Since cameras are
deployed at different positions with different angles, the camera-
specific marked regions also vary significantly. However, we

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2024 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

SHI et al.: ADAPYRAMID: ADAPTIVE PYRAMID FOR ACCELERATING HIGH-RESOLUTION OBJECT DETECTION ON EDGE DEVICES

argue that the ratio of such regions to the whole frame is minor
in most cases. This is because the regions are located with a
great probability at some special positions, such as the frame
boundaries and exits of buildings. Thereby, the detection work
is limited.

With the offline marking, AdaPyramid then performs infer-
ence on marked regions. Since object omissions in the current
frame may incur accumulated omissions later, we do not want to
miss any new object. To this end, the new object detector works
for each frame. Besides, we choose the cheapest configuration
from pool P whose offline estimated accuracy is higher than
0.9. We set this high threshold to make sure the detection of new
objects is accurate enough.

It should be noted that besides the NN-based methods, some
traditional methods such as frame difference, optical flow and
edge detection methods [11], [38] are also used to identify
the regions containing objects. However, we propose that our
method is orthogonal with theirs, since their methods can be
applied to our marked regions for overhead reduction, instead
of operating on the whole frame. Therefore, the performance
gain can be combined.

V. EVALUATION

In this section, we evaluate the performance of AdaPyramid
under different real scenes. We first compare the achieved la-
tency of AdaPyramid with various baselines under different
accuracy. We then conduct ablation studies to evaluate the
performance gain from individual components.

A. Experiment Setup

1) Implementation: We implement AdaPyramid on a Jetson
AGX Xavier with an 8-core Nvidia Carmel CPU and a 512-
core Nvidia Volta GPU. The power mode is set to MAXN. We
use Python for easy integration of deep learning applications.
PyTorch is used as the inference engine on this mobile GPU for
object detection. Additionally, we use the widely-used F1 score
as the accuracy metric.

When constructing the configuration pool, we use
{YOLOV5n, YOLOv5s, YOLOvV5m, YOLOVS51} as the NN set.
Before running our system, we load all the models into GPU
memory. Therefore, there is no model switching overhead when
performing inference with different models. Our candidate
NNs consume around 2GB of GPU memory in total which is
acceptable for Jetson AGX Xavier. For those edge devices with
less GPU memory, we can customize the NN set for practical
use. We then use YOLOvVS5x as the oracle model to do the
labeling work, since its performance is nearly SOTA among all
the known YOLO implementations.

To build our feature predictor, we use SORT [20] as the exist-
ing multi-object tracking algorithm with the typical detection-
based tracking structure. This is chosen for its high tracking
efficiency which consumes several milliseconds for one frame
on CPU. We integrate it into AdaPyramid following Section
IV-B2 with some modifications in its source code. Although
SORT is used in our system, we also allow users to apply other
efficient MOT algorithms, whose integration method is similar.

0.900

8219

E 4

0.92

_— * e __---
0.875 ey 0901 R ans Lx-
i
g0850 e o" g% /¥
s
Sos2s| £ 27 5086 fg
0.800 aosal oy
e A —# AdaPyramid o082 " 7 —# AdaPyramid
0.775 v/ =¥ SimpleNN 0.80 / =¥ SimpleNN
0.750 " —&- Remix 0.78 VI —&- Remix
0.725
500 1000 1500 2000 2500 500 1000 1500 2000 2500
Latency (ms) Latency (ms)
(a) (b)
Fig. 11. Inference latency and F1 score on PANDA 4K dataset (a) and collected

videos (b) with Jetson AGX Xavier.

2) Dataset: We evaluate AdaPyramid on the videos from
PANDA 4K dataset for person and vehicle detection. PANDA is a
public video dataset for large-scale, long-term, and multi-object
visual analysis, captured by a gigapixel camera. It is composed
by diverse real-world scenes (totaling 21 currently), including
street, crossroad, basketball court, etc., captured from various
camera angles and locations. Besides, it contains 75,600 frames
with more than 200 objects in each frame on average. In this
dataset, frame rate of videos are different. We thus perform
downsampling on them and convert them to 12 fps videos
universally.

3) Baselines: Our baselines include the following object de-
tection solutions:

e SimpleNN. This is a widely adopted method, which per-
forms NN-based inference straightforwardly on whole
frames of videos. We respectively test YOLOvSn,
YOLOV5s, YOLOvV5m and YOLOVSI.

e Remix [13]. This is a state-of-the-art solution to improv-
ing inference accuracy with a latency budget. It assumes
each NN has a fixed input frame size, while heavy mod-
els often have larger sizes than the light ones. However,
YOLOVS only has one training frame size, i.e., 640 x 640.
Following the setting of Remix paper, we adjust the in-
put size to 768 x 768, 896 x 896, 1,024 x 1,024 and
1,024 x 1,024 for YOLOvV5n, YOLOvVSs, YOLOvS5m and
YOLOVSI respectively. We then tune the latency budget
and obtain different latency-accuracy tuples.

B. Overall Performance

We present the overall performance of AdaPyramid and base-
lines in Fig. 11. For AdaPyramid, we tune « as 0.85, 0.87, 0.90,
0.92 and 0.95 respectively to achieve different latency-accuracy
tradeoffs. Then, each point on the curves denotes achieved
average accuracy and latency for frames from all scenes with
one of the « settings above.

In Fig. 11(a), AdaPyramid achieves the best performance
compared to the baselines. Under similar accuracy, AdaPyramid
can decrease latency by 40% on average with up to 2.5 speed-
up. The performance gain is very prominent, particularly when
we demand high accuracy. In this case, since more expensive
configurations are used, there also exists more potential for
reducing inference overhead. Compared to SimpleNN without
the configuration adaptation and the background elimination,
AdaPyramid reduces as much inference latency as possible by
optimizing both aspects. Compared to Remix, the performance
gain mainly comes from three aspects.

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2024 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

8220

First, AdaPyramid adapts the configuration based on the
latest video content, i.e., object features updated per frame.
By contrast, Remix selects plans based on the performance
estimation of them, which is calculated with the analysis on
historical frames and may be out-of-date for high-quality plan
selection.

Second, AdaPyramid eliminates the background with no
object more thoroughly than Remix. Although AIMD-based
selective execution is applied to skip the regions unlikely to
contain objects, this approximate method cannot skip every
background region and may wrongly skip the regions con-
taining objects actually. Besides, there still exists much back-
ground in the regions containing objects, which Remix fails to
handle.

Third, Remix suffers from the densely partitioned regions,
whose boundaries slice objects into pieces, hurting the accuracy
remarkably. By contrast, AdaPyramid restricts very dense par-
tition plans to alleviate the problem. Specifically, Remix sets
the partitioned region sizes as the training input sizes of NNs.
However, most NNs for object detection possess relatively small
input sizes (e.g., 800x 800 for RetinaNet, 1024 x 1024 for Faster
R-CNN), leading to dense partition plans. For instance, in our
settings, the partition granularity is more than 3 x 3 for 4K videos.
Once the objects distribute relatively densely on the frames, too
many of them will be sliced into pieces by the region boundaries.
Even though Remix attempts to alleviate this by adding margins
to the detection regions, the problem is not entirely solved in
practice. From Fig. 11, we can observe that Remix fails to
outperform SimpleNN when latency is either very low or very
high. In such cases, Remix and SimpleNN both adopt very cheap
or expensive configurations. However, Remix suffers significant
accuracy loss in addition.

In addition to the public PANDA 4K dataset, we further
evaluate the scalability of AdaPyramid on more videos and
devices. Specifically, we deploy AdaPyramid in real world using
Jetson AGX Xavier, and collect 4K videos for evaluation from
a university campus at different times. They contain around
18,000 frames with about 15 objects in each frame on average.
Compared with PANDA, the objects are thus relatively sparser
in our collected videos. We present the performance of AdaPyra-
mid and baselines in Fig. 11(b). Due to the sparser distribution of
objects in the frames, Remix can always outperform SimpleNN
since the object slicing problem discussed above is greatly mit-
igated. Meanwhile, AdaPyramid can decrease latency by 61%
on average with up to 3x speed-up, and still achieve the best
performance, presenting its extensibility in various scenarios.
We also evaluate AdaPyramid on a different Jetson TX2 device.
The results are illustrated in Fig. 13, showing 54% latency
reduction on average with up to 3.1 x speed-up on the datasets we
use. We also observe that the trends of F1 score-latency curves
are similar across different devices.

Next, we break down AdaPyramid and evaluate each key
component, i.e., object feature predictor, configuration adapter,
pyramid-like partitioner and new-object detector. Limited by
space, we choose three typical scenarios when the results must
be presented based on specific scenes.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 8, AUGUST 2024

580 1.0
0.8 =P Latency
0 -@= F1 score 0.8
0.7 1]
é 0.6 6
206 2
— - 0.4+
W 0.5]-% o
-
— 0.2
0.4{ 5
1 2 3 4 5 6 7 8 1805516 12 24 36 72 144°°
Window index The value of p
(@ (b)

Fig. 12. Evaluation of object feature predictor. (a) shows the average F1
score on successive time windows under different p values. Each time win-
dow contains 100 frames. (b) illustrates the accuracy-latency tradeoff as p
changes.

o 0.90
—_
80.85 s
:0'80 ,/,’f"’ -+~ AdaPyramid -*- SimpleNN --®- Remix
0751 7~
2 4 6 8 10 12 14 16
Latency (s)
(@)
2 0.90 /*——:;‘f,—a- ———————— e s St T
Q085 F T
— 0.801 & .. -#- AdaPyramid --+- SimpleNN --®- Remix
TN v’
2 4 6 8 10 12 14 16
Latency (s)
(b)
Fig.13. Inference latency and F1 score on PANDA 4K dataset (a) and collected

videos (b) with Jetson TX2.

C. Evaluation of Object Feature Predictor

To show the effectiveness of feature predictor, we first evaluate
whether the object omission problem is solved. Recall that we
have proposed in Section IV-B3 that omissions in the current
frame incur accumulated permanent omissions in the following
frames. We solve this problem by reserving the trackers p times
when they fail in the association on the first time. Now, we set p
to different values, and plot the average F1 score on successive
time windows in Fig. 12(a). Here, a time window contains 100
frames.

Fig. 12(a) shows that such a proposed reservation method
alleviates the problem. When our method is not applied, which
means p is zero, accuracy drops significantly as time goes on.
When p is set to 1, the catastrophic accuracy loss is eliminated.
As p increases, accuracy also improves, since more omitted
objects are well handled and are distinguished from those leav-
ing the view field permanently. They thus incur no permanent
omissions later.

However, higher p hurts the inference latency. Fig. 12(b)
presents the average accuracy and latency across different values
for p. As pincreases from O to 12, the F1 score goes up from 0.57
to 0.79. We notice that accuracy gain is limited when p is larger.
This is because most omitted objects can be handled with a low
value of p. Considering this tradeoff, we set p to 24 as it can
mitigate the problem considerably but with a minor additional
time overhead.

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2024 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

SHI et al.: ADAPYRAMID: ADAPTIVE PYRAMID FOR ACCELERATING HIGH-RESOLUTION OBJECT DETECTION ON EDGE DEVICES

TABLE I
F1 SCORE OF THE OBJECT FEATURE PREDICTOR
« 095 | 092 | 090 | 0.87 | 0.85
F1score | 0.85 | 0.85 | 0.86 | 0.85 | 0.85
TABLE III
F1 SCORE ERROR OF THE APPROXIMATE ACCURACY WITH THE RESULT
EVALUATOR
« 0.95 | 0.92 0.90 0.87 0.85
F1 score error | 0.04 | 0.02 | -0.01 | -0.02 | -0.02

> 1500

EA —¥— Park —&— Plaza —e— Campus
v 1000

LE

@©

-

v V¥ ¥ ¥ 7

0 2 4 6 8 10 12 14 16 18
Frame Index

Fig. 14. Latency of configuration in the first 20 frames on three typical videos,
i.e., park, plaza and campus, presenting fast latency convergence.

Next, we evaluate the prediction accuracy of feature predictor.
Table II shows that with different accuracy demand «, the
predicted object features can always maintain accurate enough
to guide the configuration adapter and partitioner.

Furthermore, since the predicted object features are used as
the approximate ground truth to online evaluate the detection
results, we compare such approximate accuracy with the actual
accuracy obtained by using the actual ground truth. Table III
presents the F1 score error with different accuracy demand «,
which is computed by subtracting the approximate accuracy
from the actual accuracy. The results show that our approxi-
mation can approach the optimum and validate the effectiveness
of the result evaluator.

D. Evaluation of Configuration Adapter

This module chooses the cheapest configurations with an
accuracy demand, when performing object detection on a video.
This is implemented by adapting the choice both in a frame
and across frames. Specifically, when adapting for a region, it
starts from a conservative configuration and then searches for
cheaper ones until the desired one is found. Fig. 14 illustrates
the converging process in three different scenes (i.e., park, plaza
and campus).

In Fig. 14, latency of the searched configuration reduces
significantly in the first 20 frames. Starting from the conservative
configuration decided initially, it achieves a 45-75% latency
reduction in the following adaptation process. We can observe
that convergence is achieved very fast, within 12 frames, i.e.,
less than 1 s for 12 fps videos, owing to our binary search-based
adaption algorithm.

In the configuration adapter, « reflects the desired accuracy
demand of the user. Fig. 15 shows latency-accuracy tradeoff
by tuning the user demand, which is approximately guaranteed.
As « increases, accuracy approaches the optimum achieved by
the most expensive configuration, but also with a significantly
increasing latency. Since a low « may introduce accumulated

8221

0.89 1000
=P F1 score
-@— Latency w0
v 0.86 700 £
o
:
T 0.83 400 9
©
-
0.80 100

0.75 0.8 0.85 0.9 0.95
The value of a

Fig. 15. Accuracy-latency tradeoff as « value changes.
L0 300
0.9 250
2 200
S 0.8 c
a0y L 150
i 100
06 50
0.5 P o -
93¢ ¢ 92 <
.\6«\'*:1\(0“(\ .\ﬁ«\'*:\@“(\
PR @V
Fig. 16. F1 score and latency with uniform partition method and our pyramid-

like partition method.

TABLE IV
LATENCY WITH DIFFERENT PARTITION GRANULARITY CHOICES ON CAMPUS
VIDEO

) b 0 1 2 3
v
0 798 792 1291 1054
T 1085 636 960 948
2 1110 823 935 992
3 1310 879 1029 1179

permanent object omissions (see Section IV-C4), « is greater
than 0.75 in AdaPyramid.

E. Evaluation of Pyramid-Like Partitioner

Our pyramid-like partition algorithm is designed following
the guideline that the top portion of frames should be partitioned
into thinner regions than the bottom. We compare this algorithm
with the uniform method in Fig. 16. The result shows that our
design can achieve a 15% latency reduction on average with no
accuracy compromise.

Additionally, the partition granularity affects performance
significantly. Table IV illustrates average latency with different
granularity choices under the scene of the campus, where the
lowest latency is achieved when granularity is (1, 1). In the
scenes of the park and plaza, the lowest latency is achieved when
granularity is (0, 2) and (1, 1) respectively. We observe that the
best granularity for the park scene is finer than the rest when
partitioning horizontally. This is because the resolution of the
park video is 3,840 < 2,880 while the rest is 3,840x2,160. The hi-
erarchical object distribution is thus more prominent in the park
video. Moreover, the objects in it are relatively sparser than the
rest with less probability of being sliced by region boundaries.
It can thus tolerate denser partitions. From the experiments, we
obtain that the best granularity in most videos is coarser than (2,
2). When granularity becomes finer, the object-slicing problem is

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2024 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

8222
3500
3000 EEm Specific-region
) E Whole-frame
£ 2500
>.2000
o
< 1500
5 1000
-
500
Park Plaza Campus
Fig. 17. Latency with the common whole-frame method and our specific-

region method.

TABLE V
AVERAGE LATENCY OF THE SYSTEM COMPONENTS AND THE COMPUTE UNITS
THAT THEY ARE RUNNING ON

Components Latency (ms) Compute Unit
Config. adapter 1.29 CPU
Predictor 11.13 CPU
Result merging 3.49 CPU
Total 15.91 CPU

more notable, thus hurting accuracy significantly. This explains
why we search for the best configuration from (0, 0) to (2, 2).

F. Evaluation of Fast New-Object Detector

When handling new objects which first appear in a frame,
new-object detector only performs inference on offline-marked
specific regions in which new objects can occur. Compared to
existing solutions that handle the total frame, this greatly reduces
the time overhead since marked regions are limited in most
cases. Fig. 17 shows the latency comparison between these two
methods in three scenes. We use the same configuration choice
method for both of them. Specifically, we choose the cheapest
ones whose offline estimated Recall is higher than 0.9.

Results show that latency of the whole-frame method is too
much for practical use unless accuracy is compromised. This
is because the golden configuration has to be used on all three
scenes to achieve the high accuracy demand. Our new-object
detector is 10x faster since we only have2to handle marked
regions whose sizes are much smaller. Moreover, configurations
can be chosen based on the features of each region.

G. System Overhead

System overhead is minor in AdaPyramid, which mainly
comes from three components: object feature predictor (with
tracker update), configuration adapter, and result merging. Since
our pyramid-like partition is a fixed strategy only requiring one-
time effort, it is not covered in the analysis. Table V shows the
average latency of these components as well as which compute
unit they are running on (only the NN inference is performed on
GPU). Since in most cases the total end-to-end latency is larger
than 160ms, the system overhead is often less than 10% of it. Itis
sufficiently low to deliver main functions such as pyramid-like
partition and configuration adapter for the significant latency
reduction.

We observe that the object feature predictor and result merging
consume more than 90% of the total system overhead. This is
because videos in the PANDA 4K dataset often contain 1004

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 8, AUGUST 2024

objects in each frame, while the overhead of both the motion
prediction algorithm in the feature predictor and the NMS oper-
ation in the result merging is highly related with the number of
objects. Therefore, when working on videos with fewer objects,
the system overhead of AdaPyramid can be reduced accordingly.

H. Memory Footprint

We measure the memory footprint of AdaPyramid, which
consumes at most 7.8GB in the running process. We observe that
the weights and immediate tensors occupy the majority portion
(around 5GB), since AdaPyramid loads all the NN models into
GPU memory before running the system, which will be utilized
to perform object detection mixedly on the video frames. We
adopt this straightforward method so far to get rid of the model
switching overhead. However, a more sophisticated loading and
unloading strategy for the NN models can be potentially more
memory-efficient. We leave this study as future work for a lower
memory footprint.

VI. CONCLUSION AND FUTURE WORK

We design and implement AdaPyramid, a framework to re-
duce as much on-device inference latency as possible, especially
for high-resolution videos, while still achieving the accuracy
demand approximately. The design is based on the observations
of high-resolution video features. We then make extensive explo-
rations to utilize the observations in order to optimize our system.
We also discuss the rationality of every design sufficiently in this
paper.

Moving forward, we will improve AdaPyramid regarding
three aspects. First, the construction of the configuration pool
requires further investigation. A good pool should cover a wide
range of detection capabilities in a fine-grained way. To realize
this goal, besides considering each existing knob (i.e., the NN’s
type and frame scaling ratio) more carefully, we can also add
more knobs. Second, we will try to extend AdaPyramid from the
current fixed camera scenarios to moving camera scenarios by
adaptively updating the pyramid-like partition scheme. Lastly,
we will study how to extend AdaPyramid for parallel inference
on heterogeneous edge devices, considering each frame has been
partitioned into different regions which have no dependency in
inference amongst each other.

ACKNOWLDGMENT

We thank the editor and anonymous reviewers.

REFERENCES
[1

—

G. Ananthanarayanan et al., “Video analytics - killer app for edge comput-

ing,” in Proc. Annu. Int. Conf. Mobile Syst. Appl. Serv., 2019, pp. 695-696.

R. Bhardwaj et al., “Ekya: Continuous learning of video analytics models

on edge compute servers,” in Proc. USENIX Symp. Netw. Syst. Des.

Implementation, 2022, pp. 119-135.

L. N. Huynh et al., “DeepMon: Mobile GPU-based deep learning frame-

work for continuous vision applications,” in Proc. ACM Annu. Int. Conf.

Mobile Syst. Appl. Serv., 2017, pp. 82-95.

[4] M. Xu et al., “Video analytics with zero-streaming cameras,” in Proc.
USENIX Annu. Tech. Conf., 2021, pp. 459—472.

[5] M. Xu et al., “DeepCache: Principled cache for mobile deep vision,” in

Proc. ACM Annu. Int. Conf. Mobile Comput. Netw., 2018, pp. 129-144.

[2

—

3

—_

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2024 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

SHI et al.: ADAPYRAMID: ADAPTIVE PYRAMID FOR ACCELERATING HIGH-RESOLUTION OBJECT DETECTION ON EDGE DEVICES

[6]

[7]
[8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

N. Chen, S. Zhang, S. Zhang, Y. Yan, Y. Chen, and S. Lu, “ResMap:
Exploiting sparse residual feature map for accelerating cross-edge video
analytics,” in Proc. IEEE Conf. Comput. Commun., 2023, pp. 1-10.
Qualcomm vision Al devkit. [Online]. Available: https://bit.ly/328LjBF
Hikvision 4K camera. [Online]. Available: https://bit.ly/2NViRiT

L. Liu et al., “Edge assisted real-time object detection for mobile aug-
mented reality,” in Proc. ACM Annu. Int. Conf. Mobile Comput. Netw.,
2019, pp. 1-16.

X. Wang, Z. Yang, J. Wu, Y. Zhao, and Z. Zhou, “EdgeDuet: Tiling small
object detection for edge assisted autonomous mobile vision,” in Proc.
IEEE Conf. Comput. Commun., 2022, pp. 1-10.

K. Yang, J. Yi, K. Lee, and Y. Lee, “FlexPatch: Fast and accurate object
detection for on-device high-resolution live video analytics,” in Proc. IEEE
Conf. Comput. Commun., 2022, pp. 1898-1907.

W. Zhang et al., “Elf: Accelerate high-resolution mobile deep vision with
content-aware parallel offloading,” in Proc. ACM Annu. Int. Conf. Mobile
Comput. Netw., 2021, pp. 201-214.

S. Jiang et al., “Flexible high-resolution object detection on edge devices
with tunable latency,” in Proc. ACM Annu. Int. Conf. Mobile Comput.
Netw., 2021, pp. 559-572.

G.Zhaoetal., “Collaborative training between region proposal localization
and classification for domain adaptive object detection,” in Proc. Eur. Conf.
Comput. Vis., 2020, pp. 86—102.

Y. Zheng, D. Huang, S. Liu, and Y. Wang, “Cross-domain object detec-
tion through coarse-to-fine feature adaptation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2020, pp. 13766-13775.

Common Objects in Context. [Online]. Available: https://cocodataset.org
M. Najibi, B. Singh, and L. Davis, “AutoFocus: Efficient multi-scale infer-
ence,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 9745-9755.
J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed tracking
with kernelized correlation filters,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 37, no. 3, pp. 583-596, Mar. 2015.

B. D. Lucas et al., “An iterative image registration technique with an
application to stereo vision,” in Proc. Int. Joint Conf. Artif. Intell., 1981,
pp. 674-679.

A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” in Proc. IEEE Int. Conf. Image Process., 2016,
pp. 3464-3468.

N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking
with a deep association metric,” in Proc. IEEE Int. Conf. Image Process.,
2017, pp. 3645-3649.

C. Zhang et al., “Optimizing FPGA-based accelerator design for deep
convolutional neural networks,” in Proc. ACM/SIGDA Int. Symp. Field-
Programmable Gate Arrays, 2015, pp. 161-170.

N. P. Jouppi et al., “In-datacenter performance analysis of a tensor pro-
cessing unit,” in Proc. Annu. Int. Symp. Comput. Archit., 2017, pp. 1-12.
B. Fang et al., “NestDNN: Resource-aware multi-tenant on-device deep
learning for continuous mobile vision,” in Proc. ACM Annu. Int. Conf.
Mobile Comput. Netw., 2018, pp. 115-127.

Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 1398-1406.

Z. He and D. Fan, “Simultaneously optimizing weight and quantizer of
ternary neural network using truncated Gaussian approximation,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 11430-11438.
J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2016, pp. 4820-4828.

J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation:
Fast optimization, network minimization and transfer learning,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2017, pp. 4133-4141.
B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 8697-8710.

J. Jiang et al., “Chameleon: Scalable adaptation of video analytics,” in
Proc. ACM Conf. Special Int. Group Data Commun., 2018, pp. 253-266.
H. Zhang et al., “Live video analytics at scale with approximation and
delay-tolerance,” in Proc. USENIX Symp. Netw. Syst. Des. Implementation,
2017, pp. 377-392.

C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint configu-
ration adaptation and bandwidth allocation for edge-based real-time video
analytics,” in Proc. IEEE Conf. Comput. Commun., 2020, pp. 257-266.
M. Zhang, F. Wang, and J. Liu, “CASVA: Configuration-adaptive stream-
ing for live video analytics,” in Proc. IEEE Conf. Comput. Commun., 2022,
pp. 2168-2177.

[34]

[35]
[36]

(371

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]
[50]

[51]

8223

X. Shi, S. Zhang, K. Cheng, Y. Chen, A. Zhu, and S. Lu, “OSCA: Online
user-managed server selection and configuration adaptation for interactive
MAR,” in Proc. IEEE/ACM 31st Int. Symp. Qual. Serv., 2023, pp. 1-10.
YOLOVS. [Online]. Available: https://github.com/ultralytics/yolov5

S. Ren et al., “Faster R-CNN: Towards real-time object detection with
region proposal networks,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2015, pp. 91-99.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dolldr, “Focal loss for
dense object detection,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 2980-2988.

J. Yi et al., “Eagleeye: Wearable camera-based person identification in
crowded urban spaces,” in Proc. ACM Annu. Int. Conf. Mobile Comput.
Netw., 2020, pp. 9745-9755.

M. Gao, R. Yu, A. Li, V. I. Morariu, and L. S. Davis, “Dynamic zoom-in
network for fast object detection in large images,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2018, pp. 6926—-6935.

M. Yuan etal., “InFi: End-to-end learnable input filter for resource-efficient
mobile-centric inference,” in Proc. ACM Annu. Int. Conf. Mobile Comput.
Netw., 2022, pp. 228-241.

Y. Chai, “Patchwork: A patch-wise attention network for efficient object
detection and segmentation in video streams,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis., 2019, pp. 3415-3424.

M. Gao, P. Zhang, Z. Lin, J. Zhang, and H. Lu, “Towards high-resolution
salient object detection,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019,
pp. 7234-7243.

T. Y.-H. Chen et al., “Glimpse: Continuous, real-time object recognition
on mobile devices,” in Proc. ACM Conf. Embedded Netw. Sensor Syst.,
2015, pp. 155-168.

K. Apicharttrisorn et al., “Frugal following: Power thrifty object detection
and tracking for mobile augmented reality,” in Proc. ACM Conf. Embedded
Netw. Sensor Syst., 2019, pp. 96—109.

M. Liu, X. Ding, and W. Du, “Continuous, real-time object detection on
mobile devices without offloading,” in Proc. IEEE 40th Int. Conf. Distrib.
Comput. Syst., 2020, pp. 976-986.

L. Xu et al., “Scale invariant optical flow,” in Proc. Eur. Conf. Comput.
Vis., 2012, pp. 385-399.

PANDA dataset. [Online]. Available: http://www.panda-dataset.com

X. Wang et al., “PANDA: A gigapixel-level human-centric video
dataset,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020,
pp. 3265-3275.

Nvidia Jetson AGX Xavier. [Online]. Available: http://bit.ly/3nVIBM7
A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2019,
pp. 8026-8037.

Z.Xiao, Z. Xia, H. Zheng, B. Y. Zhao, and J. Jiang, “Towards performance
clarity of edge video analytics,” in Proc. IEEE/ACM Symp. Edge Comput.,
2021, pp. 148-164.

Xiaohang Shi (Graduate Student Member, IEEE)
received the BS degree from the Department of Com-
puter Science and Technology, Nanjing University,
Nanjing, China, in 2020, where he is currently work-
ing towards the PhD degree under the supervision
of Prof. Sheng Zhang. He is a member of the State
Key Laboratory for Novel Software Technology. His
research interests include edge computing and video
analytics.

Sheng Zhang (Senior Member, IEEE) is an associate
professor with the Department of Computer Science
and Technology, Nanjing University. His research
interests include cloud computing and edge comput-
ing. To date, he has published more than 80 papers,
including those which appeared in IEEE Journal on
Selected Areas in Communications, IEEE Transac-
tions on Mobile Computing, IEEE/ACM Transactions
on Networking, MobiHoc, ICDCS, and INFOCOM.
He received the Best Paper Award of IEEE ICCCN
2020 and the Best Paper Runner-Up Award of IEEE

MASS 2012.

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2024 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

https://bit.ly/328LjBF
https://bit.ly/2NViRiT
https://cocodataset.org
https://github.com/ultralytics/yolov5
http://www.panda-dataset.com
http://bit.ly/3nVJBM7

8224

Jie Wu (Fellow, IEEE) is the director of the Center
for Networked Computing and Laura H. Carnell pro-
fessor with Temple University. He also serves as the
director of International Affairs with the College of
Science and Technology. His current research inter-
ests include mobile computing and wireless networks,
routing protocols, cloud and green computing, net-
work trust and security, and social network applica-
tions. He regularly publishes in scholarly journals,
conference proceedings, and books. He serves on
several editorial boards, including /EEE Transactions
on Mobile Computing, IEEE Transactions on Service Computing, Journal of
Parallel and Distributed Computing, and Journal of Computer Science and
Technology. He is a CCF distinguished speaker and. He is the recipient of the
2011 China Computer Federation (CCF) Overseas Outstanding Achievement
Award.

Ning Chen (Graduate Student Member, IEEE) is
currently working toward the PhD degree with the
Department of Computer Science and Technology,
Nanjing University, under the supervision of Prof.
Sheng Zhang. His research interests include edge
computing, deep reinforcement learning, and video
streaming. To date, he has published several papers,
including those which appeared in INFOCOM, [EEE
Transactions on Parallel and Distributed Systems,
SECON, Computer Networks, ICPADS, et al.

Ke Cheng received the bachelor’s degree in infor-
mation management and information system with a
minor degree in computer science and technology
from Nanjing University, Nanjing, China, in 2021.
He is currently working toward the PhD degree with
the Department of Computer Science and Technol-
ogy, Nanjing University. He is a member of the
State Key Laboratory for Novel Software Technology.
His research interests include edge computing and
blockchain.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 8, AUGUST 2024

Yu Liang received the MS and PhD degrees from
Nanjing University in 2011 and 2021, respectively.
She is a lecturer with Nanjing Normal University. She
was a senior software engineer in Trend Micro China
Development Center between 2011 and 2017. Her
research interests include edge intelligence and edge
computing. Her publications include those appeared
in IEEE Transactions on Mobile Computing, IEEE
Transactions on Parallel and Distributed Systems,
IEEE/ACM Transactions on Networking, Computer
Networks, Computer Communications, IEEE ICDCS,

IEEE MSN, and IEEE Globecom.

Sanglu Lu (Member, IEEE) received the BS, MS,
and PhD degrees in computer science from Nanjing
University in 1992, 1995, and 1997, respectively.
She is currently a professor with the Department of
Computer Science and Technology and the State Key
Laboratory for Novel Software Technology. Her re-
search interests include distributed computing, wire-
less networks, and pervasive computing. She has pub-
lished more than 80 papers in refereed journals and
conferences in the above areas.

Authorized licensed use limited to: Nanjing University. Downloaded on August 18,2024 at 03:04:21 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

